...
首页> 外文期刊>IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control >A three-mask process for fabricating vacuum-sealed capacitive micromachined ultrasonic transducers using anodic bonding
【24h】

A three-mask process for fabricating vacuum-sealed capacitive micromachined ultrasonic transducers using anodic bonding

机译:使用阳极键合制造真空密封电容式微加工超声换能器的三掩模工艺

获取原文
获取原文并翻译 | 示例
           

摘要

This paper introduces a simplified fabrication method for vacuum-sealed capacitive micromachined ultrasonic transducer (CMUT) arrays using anodic bonding. Anodic bonding provides the established advantages of wafer-bondingbased CMUT fabrication processes, including process simplicity, control over plate thickness and properties, high fill factor, and ability to implement large vibrating cells. In addition to these, compared with fusion bonding, anodic bonding can be performed at lower processing temperatures, i.e., 350°C as opposed to 1100°C; surface roughness requirement for anodic bonding is more than 10 times more relaxed, i.e., 5-nm rootmean- square (RMS) roughness as opposed to 0.5 nm for fusion bonding; anodic bonding can be performed on smaller contact area and hence improves the fill factor for CMUTs. Although anodic bonding has been previously used for CMUT fabrication, a CMUT with a vacuum cavity could not have been achieved, mainly because gas is trapped inside the cavities during anodic bonding. In the approach we present in this paper, the vacuum cavity is achieved by opening a channel in the plate structure to evacuate the trapped gas and subsequently sealing this channel by conformal silicon nitride deposition in the vacuum environment. The plate structure of the fabricated CMUT consists of the single-crystal silicon device layer of a silicon-on-insulator wafer and a thin silicon nitride insulation layer. The presented fabrication approach employs only three photolithographic steps and combines the advantages of anodic bonding with the advantages of a patterned metal bottom electrode on an insulating substrate, specifically low parasitic series resistance and low parasitic shunt capacitance. In this paper, the developed fabrication scheme is described in detail, including process recipes. The fabricated transducers are characterized using electrical input impedance measurements in air and hydrophone measurements in immersion. A repr- sentative design is used to demonstrate immersion operation in conventional, collapse-snapback, and collapse modes. In collapsemode operation, an output pressure of 1.67 MPa is shown at 7 MHz on the surface of the transducer for 60-V, 3-cycle sinusoidal excitation at 30-V dc bias.
机译:本文介绍了一种采用阳极键合的真空密封电容式微加工超声换能器(CMUT)阵列的简化制造方法。阳极键合提供了基于晶圆键合的CMUT制造工艺的既定优势,包括工艺简单,控制板厚和性能,高填充系数以及实现大型振动腔的能力。除此之外,与熔融结合相比,阳极结合可以在较低的加工温度即350℃而不是1100℃下进行。阳极键合的表面粗糙度要求要宽松10倍以上,即5 nm均方根(RMS)粗糙度,而熔融键合为0.5 nm。阳极键合可以在较小的接触面积上进行,因此可以提高CMUT的填充系数。尽管先前已经将阳极键合用于CMUT的制造,但仍无法实现带有真空腔的CMUT,这主要是因为在阳极键合期间气体被捕集在腔体内。在本文中介绍的方法中,真空腔是通过在板结构中打开通道以排空捕获的气体并随后在真空环境中通过共形氮化硅沉积来密封该通道而实现的。所制造的CMUT的板结构由绝缘体上硅晶片的单晶硅器件层和薄氮化硅绝缘层组成。提出的制造方法仅采用三个光刻步骤,并且将阳极键合的优点与绝缘基板上的图案化金属底部电极的优点相结合,特别是低寄生串联电阻和低寄生并联电容。在本文中,详细描述了开发的制造方案,包括工艺配方。使用空气中的电输入阻抗测量和浸入中的水听器测量来表征制造的换能器。具有代表性的设计用于演示在常规,崩溃快照和崩溃模式下的浸入操作。在塌陷模式下,在30V dc偏置下60V,3周期正弦激励下,换能器表面在7 MHz处的输出压力为1.67 MPa。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号