...
首页> 外文期刊>IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control >Delay Estimation Using Instantaneous Frequency and Phase Difference—Simulation Study
【24h】

Delay Estimation Using Instantaneous Frequency and Phase Difference—Simulation Study

机译:瞬时频率和相位差的延迟估计—仿真研究

获取原文
获取原文并翻译 | 示例
           

摘要

We propose a time-domain delay estimator that takes the slope of the best fit line crossing the origin in the instantaneous frequency–phase difference plane as the delay estimate. This formulation differs from existing phase-based estimators in two respects. First, we find the instantaneous frequency at all individual sample points, including large and abrupt spikes caused by destructive interference in the coherent scattering process. This differs from Loupas which finds a smoothed-out center frequency estimate within an observation window. We show that under high signal-to-noise ratio (SNR), the information from these spikes can be properly used. Second, we show that error ought to be considered as the deviation of the phase difference from the best fit line rather than deviation from the averaged phase difference. Without considering instantaneous frequency, phase-based estimators make the following two errors: samples with phase difference far away from the center frequency need not be errors as they naturally have large phase difference when their instantaneous frequency is large; samples with phase difference close to the center frequency may in fact be errors if their instantaneous frequency is large. We derive the Gauss-Markov least-squares best fit line and then propose an iterative variant that removes samples from the line-fitting process if its deviation from the best fit line is sufficiently large. The iterative version can reduce the effect of aliasing for larger delays and also further reduce the root-mean-square error (RMSE) of the estimate. Simulation studies using various bandwidth, SNR, and delay parameters indicate that iterative phase least squares (PLS) begins to outperform correlation phase Loupas at between SNR of 30 dB (for larger bandwidths and larger delays) and 60 dB (for smaller bandwidths and smaller delays). As SNR increases, iterative PLS can reach a 30- to 50-dB increase in performance over correlation phase Lou- as with respect to RMSE in the most favorable conditions.
机译:我们提出了一种时域延迟估计器,该估计器将与瞬时频率-相位差平面中的原点相交的最佳拟合线的斜率作为延迟估计。该公式在两个方面与现有的基于相位的估计器不同。首先,我们找到所有单个采样点的瞬时频率,包括在相干散射过程中由相消干扰引起的大而突然的尖峰。这不同于Loupas,后者在观察窗口内找到平滑的中心频率估计值。我们表明,在高信噪比(SNR)下,可以正确使用来自这些尖峰的信息。其次,我们表明误差应被视为与最佳拟合线的相位差偏差,而不是与平均相位差的偏差。在不考虑瞬时频率的情况下,基于相位的估计器会产生以下两个误差:相位差远离中心频率的样本不必是误差,因为当瞬时频率较大时,它们自然会具有较大的相位差。如果它们的瞬时频率很大,那么具有接近中心频率的相位差的样本实际上可能是错误的。我们推导了高斯-马尔可夫最小二乘最佳拟合线,然后提出了一个迭代变型,如果它与最佳拟合线的偏差足够大,则会从线性拟合过程中删除样本。迭代版本可以减少较大延迟时混叠的影响,还可以进一步减少估计的均方根误差(RMSE)。使用各种带宽,SNR和延迟参数进行的仿真研究表明,在SNR为30dB(对于较大的带宽和较大的延迟)和60dB(对于较小的带宽和较小的延迟)之间,迭代相位最小二乘(PLS)开始优于相关相位Loupas )。随着SNR的增加,在最有利的条件下,相对于RMSE,迭代PLS的性能可以在相关相位Lou-之上达到30至50 dB的提高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号