...
首页> 外文期刊>IEEE Transactions on Magnetics >Control Characteristics of Magnetotactic Bacteria: Magnetospirillum Magnetotacticum Strain MS-1 and Magnetospirillum Magneticum Strain AMB-1
【24h】

Control Characteristics of Magnetotactic Bacteria: Magnetospirillum Magnetotacticum Strain MS-1 and Magnetospirillum Magneticum Strain AMB-1

机译:趋磁细菌的控制特性:磁螺旋菌Magnetotacticum菌株MS-1和磁螺旋菌Magneticumum磁性菌AMB-1

获取原文
获取原文并翻译 | 示例
           

摘要

Magnetotactic bacteria have the potential to execute nontrivial tasks, such as microactuation, micromanipulation, and microassembly, under the influence of the controlled magnetic fields. Closed-loop control characteristics of these magnetic microorganisms depend on their self-propulsion forces (motility) and magnetic dipole moments. These properties can be controlled through the growth conditions of magnetotactic bacteria. We provide a comparison between two species of magnetotactic bacteria, i.e., Magnetospirillum magnetotacticum strain MS-1 and Magnetospirillum magneticum strain AMB-1. This comparison includes the characterization of their morphologies, magnetic dipole moments, and closed-loop control characteristics in the transient and steady states. The characterized average magnetic dipole moments of motile cells of $M$ . magnetotacticum and $M$ . magneticum strains are $1.4times 10^{-16}~{rm A}.{rm m}^{2}$ and $1.5times 10^{-17}~{rm A}.{rm m}^{2}$ at a magnetic field of 7.9 mT, respectively. These magnetic dipole moments are used in the realization of closed-loop control systems for each bacterial strain. The closed-loop control systems achieve point-to-point positioning of $M$ . magnetotacticum cells at an average velocity of ${32pm 10}~mu{rm m}/{rm s}$ (approximately seven body lengths per second), and within an average region of convergence of ${23pm 10}~{mu}{rm m}$ (approx- mately four body lengths), while cells of $M$ . magneticum strain are positioned at an average velocity of ${30pm 12}~mu{rm m}/{rm s}$ (approximately eight body lengths per second), and within an average region of convergence of ${35pm 14}~mu{rm m}$ (approximately 14 body lengths). These results suggest that the cells of $M$ . magnetotacticum strain have a slightly greater tendency to provide desirable closed-loop control characteristics than cells of $M$ . magneticum strain.
机译:趋磁细菌有可能在受控磁场的影响下执行一些重要的任务,例如微驱动,微操纵和微装配。这些磁性微生物的闭环控制特性取决于它们的自推进力(运动性)和磁偶极矩。这些性质可以通过趋磁细菌的生长条件来控制。我们提供了两种趋磁细菌之间的比较,即磁螺菌磁趋化菌MS-1和磁螺菌AMB-1。这种比较包括瞬态和稳态下它们的形态,磁偶极矩和闭环控制特性的表征。运动细胞的特征平均磁偶极矩为$ M $。磁律和$ M $。电磁应变为$ 1.4乘以10 ^ {-16}〜{rm A}。{rm m} ^ {2} $和$ 1.5乘以10 ^ {-17}〜{rm A}。{rm m} ^ {2} $分别在7.9 mT的磁场下。这些磁偶极矩用于实现每种细菌菌株的闭环控制系统。闭环控制系统实现$ M $的点对点定位。趋磁细胞的平均速度为$ {32pm 10}〜mu {rm m} / {rm s} $(每秒大约7体长),并且平均收敛区域为$ {23pm 10}〜{mu} {rm m} $(大约四个体长),而单元格为$ M $。电磁应变的平均定位速度为$ {30pm 12}〜mu {rm m} / {rm s} $(每秒八次体长),并且平均收敛速度为$ {35pm 14}〜mu {rm m} $(大约14个身体长度)。这些结果表明$ M $的单元格。与$ M $的单元格相比,趋磁性菌株具有提供所需闭环控制特性的趋势略大。磁应变。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号