首页> 外文期刊>Magnetics, IEEE Transactions on >Design With Optimization of a Magnetic Separator for Turbulent Flowing Liquid Purifying Applications
【24h】

Design With Optimization of a Magnetic Separator for Turbulent Flowing Liquid Purifying Applications

机译:湍流液体净化应用中电磁分离器的优化设计

获取原文
获取原文并翻译 | 示例
       

摘要

In this paper, an open gradient magnetic separator for turbulent flowing water purification has been designed, optimized, and experimentally tested. This device consists of an arrangement of identical electromagnets that operate as capture elements. In the first stage of the optimization, we have identified the optimal size of the elementary capture element and its excitation current that allow the separation of ferromagnetic particles (particle radius m) from a water flow of representative velocity ( m/s) in a channel of small diameter m. For this, we have minimized an objective function, which is the distance between the capture site of a given separated particle and the central point of the capture element. For such minimization, the Tabu search method has been applied. Second, we have optimized the number and the arrangement of capture elements that permit the separation for a channel of important diameter m and reduced flow velocity m/s. In this case, the optimization is based on the comparison between the capture efficiencies of several proposed configurations of the separator. To validate the obtained results, experiments have been carried out on a turbulent water flow (Reynolds number ) containing fine ferromagnetic particles () with a concentration g/L. The verification is based on the control of the evolution of the separated particles buildup and the quantifying of the volume of separated particles. For such quantifying, the Hall effect sensing technology has been used.
机译:在本文中,已经设计,优化和试验了用于湍流净化水的开放式梯度磁选机。该设备由用作捕获元件的相同电磁体组成。在优化的第一阶段,我们已经确定了基本捕获元素的最佳尺寸及其激励电流,可以将铁磁粒子(粒子半径m)从通道中代表速度(m / s)的水流中分离出来小直径的为此,我们最小化了目标函数,该函数是给定分离粒子的捕获位置与捕获元素中心点之间的距离。为了使这种最小化,已经应用了禁忌搜索方法。第二,我们优化了捕获元件的数量和布置,以允许分离重要直径m的通道和降低流速m / s的通道。在这种情况下,最优化是基于几种建议的分离器配置的捕集效率之间的比较。为了验证所获得的结果,已对湍流水流(雷诺数)进行了实验,其中湍流水包含浓度为g / L的细铁磁颗粒()。验证是基于对分离的颗粒堆积的演变的控制以及对分离的颗粒的体积的量化。为了进行这种量化,已经使用了霍尔效应传感技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号