首页> 外文期刊>Geothermics >Precious metals in high-temperature geothermal systems in New Zealand
【24h】

Precious metals in high-temperature geothermal systems in New Zealand

机译:新西兰高温地热系统中的贵金属

获取原文
获取原文并翻译 | 示例
           

摘要

High-temperature geothermal systems are the modern analogue of epithermal precious metal ore deposits. In these systems, gold and silver are transported primarily as bisulfide complexes, with the precious metals being deposited in response to boiling and mixing of the deep geothermal fluid. In order for the geothermal system to produce an economic precious metal deposit within the typical lifetime of a geothermal system, the deposition process must be efficient, and the gold and silver concentrations in the geothermal fluid must be sufficient. Thermodynamic data have been measured for gold and silver bisulfide complexes, but the question remains as to whether the deep geothermal fluid is saturated with respect to these complexes. Measurement of gold and silver concentrations in geothermal fluid sampled at the surface shows very low concentrations, as these metals precipitate down the well. Indirect measurements of the deep reservoir gold and silver concentrations have been calculated by estimating precipitate concentrations on scale deposits recovered from high-pressure apparatus at the surface. These estimates produce precious metal concentrations that are below saturation. We therefore designed and built a downhole sampling device specifically to measure precious and other trace metal concentrations in the deep reservoir fluids. The device is manufactured from titanium to be chemically inert, and therefore capable of scavenging the trace metals through acid rinsing. Analyses for precious and related metals on deep waters obtained from Kawerau and Ngawha geothermal systems, New Zealand, have been measured. Solutions were analysed by ICP-MS. Laboratory testing using blank solutions shows minimal sources of contamination from materials used in the construction and sampling procedure (i.e. titanium, MilliQ water and aqua regia). At Kawerau, samples were obtained from deep wells at ≥ 1000 m depth at temperatures of 260 to 295℃, while at Ngawha samples were taken from > 800 m depth at temperatures of 225-> 235℃. Gold, silver and thallium are at ppb levels, while arsenic, antimony and copper range from hundreds to thousands of ppb. Comparing these results with calculated solubilities of gold, silver and acanthite suggests deep waters are undersaturated in gold but close to saturation in silver.
机译:高温地热系统是超热贵金属矿床的现代类似物。在这些系统中,金和银主要以二硫化物络合物的形式运输,贵金属是​​根据深层地热流体的沸腾和混合而沉积的。为了使地热系统在地热系统的典型使用寿命内产生经济的贵金属矿床,沉积过程必须高效,并且地热流体中的金和银浓度必须足够。已经测量了金和二硫化氢银配合物的热力学数据,但是关于这些配合物深层地热流体是否饱和仍然存在问题。在地表采样的地热流体中金和银的浓度测量显示出非常低的浓度,因为这些金属从井中沉淀下来。通过估算从地面高压设备回收的水垢沉积物上的沉淀物浓度,可以计算出深层储层金和银浓度的间接测量值。这些估计产生的贵金属浓度低于饱和度。因此,我们设计并建造了一个井下采样设备,专门用于测量深层储层流体中的贵金属和其他痕量金属浓度。该设备由钛制成,具有化学惰性,因此能够通过酸洗清除痕量金属。已对从新西兰Kawerau和Ngawha地热系统获得的深水中的贵重金属和相关金属进行了分析。通过ICP-MS分析溶液。使用空白溶液进行的实验室测试表明,建筑和采样过程中使用的材料(即钛,MilliQ水和王水)污染的源极少。在Kawerau,样品是在260至295℃的温度下从深度≥1000 m的深井中取样的,而在Ngawha的样品是在225-> 235℃的温度下从> 800 m的深度中取样的。金,银和al的含量为ppb,而砷,锑和铜的含量为数百至数千ppb。将这些结果与金,银和,石的溶解度进行比较,表明深水的金含量不足,而银的含量接近饱和。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号