首页> 外文期刊>Fuel >Large Eddy Simulation of CO2 diluted oxy-fuel spray flames
【24h】

Large Eddy Simulation of CO2 diluted oxy-fuel spray flames

机译:二氧化碳稀释的氧气-燃料喷雾火焰的大涡模拟

获取原文
获取原文并翻译 | 示例
       

摘要

We report results of a computational study of oxy-fuel spray jet flames. An experimental database on flames of ethanol burning in a coflow of a O-2-CO2 mixture, created at CORIA (Rouen, France), is used for model validation (Cleon et al., 2015). Depending on the coflow composition and velocity the flames in these experiments start at nozzle (type A), just above the tip of the liquid sheet (type B) or are lifted (type C) and the challenge is to predict their structure and the transitions between them. The two-phase flow field is solved with an Eulerian Lagrangian approach, with gas phase turbulence solved by Large Eddy Simulation (LES). The turbulence-chemistry interaction is accounted for using the Flamelet Generated Manifolds (FGM) method. The primary breakup process of the liquid fuel is neglected in the current study; instead droplets are directly injected at the location of the atomizer exit at the boundary of the simulation domain. It is found that for the type C flame, which is stabilized far downstream the dense region, some major features are successfully captured, e.g. the gas phase velocity field and flame structure. The flame lift-off height of type B flame is over-predicted. The type A flame, where the flame stabilizes inside the liquid sheet, cannot be described well by the current simulation model. A detailed analysis of the droplet properties along Lagrangian tracks has been carried out in order to explain the predicted flame structure and discuss the agreement with experiment. This analysis shows that differences in predicted flame structure are well-explained by the combined effects of droplet heating, dispersion and evaporation as function of droplet size. It is concluded that a possible reason for the difficulty to predict the type A and B flames is that strong atomization-combustion interaction exists in these flames, modifying the droplet formation process. This suggests that atomization-combustion interaction should be taken into account in future study of these flame types. (C) 2017 The Author(s). Published by Elsevier Ltd.
机译:我们报告了对氧气燃料喷射火焰的计算研究结果。在CORIA(法国鲁昂)创建的O-2-CO2混合气流中乙醇燃烧火焰的实验数据库用于模型验证(Cleon等,2015)。根据同流成分和速度的不同,这些实验中的火焰始于喷嘴(A型),刚好位于液层尖端(B型)或被抬起(C型),挑战在于预测其结构和转变它们之间。两相流场通过欧拉拉格朗日方法求解,气相湍流通过大涡模拟(LES)解决。湍流-化学相互作用是使用火焰产生歧管(FGM)方法来解释的。目前的研究忽略了液体燃料的主要分解过程;而是将液滴直接注入到雾化器出口位于模拟域边界处的位置。发现对于在稠密区域下游稳定的C型火焰,成功地捕获了一些主要特征,例如。气相速度场和火焰结构。 B型火焰的火焰上升高度过高。当前的仿真模型无法很好地描述火焰稳定在液体薄片内部的A型火焰。为了解释预测的火焰结构并讨论与实验的一致性,已经对沿拉格朗日轨道的液滴特性进行了详细分析。该分析表明,通过液滴加热,扩散和蒸发的组合效应作为液滴尺寸的函数,可以很好地解释预测火焰结构的差异。结论是难以预测A型和B型火焰的可能原因是这些火焰中存在强烈的雾化-燃烧相互作用,从而改变了液滴的形成过程。这表明在今后对这些火焰类型的研究中应考虑雾化-燃烧相互作用。 (C)2017作者。由Elsevier Ltd.发布

著录项

  • 来源
    《Fuel》 |2017年第1期|165-175|共11页
  • 作者单位

    Natl Univ Def Technol, Sci & Technol Scramjet Lab, Changsha, Hunan, Peoples R China|Delft Univ Technol, Dept Proc & Energy, Delft, Netherlands;

    Natl Univ Def Technol, Sci & Technol Scramjet Lab, Changsha, Hunan, Peoples R China|Delft Univ Technol, Dept Proc & Energy, Delft, Netherlands;

    Delft Univ Technol, Dept Proc & Energy, Delft, Netherlands|Eindhoven Univ Technol, Dept Multiphase & React Flows, Eindhoven, Netherlands;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Oxy-fuel combustion; Spray combustion; Large Eddy Simulation; Flamelet Generated Manifolds; Double flame;

    机译:含氧燃料燃烧;喷雾燃烧;大涡模拟;火焰生成歧管;双火焰;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号