首页> 外文期刊>Fuel >Contribution of acidic components to the total acid number (TAN) of bio-oil
【24h】

Contribution of acidic components to the total acid number (TAN) of bio-oil

机译:酸性成分对生物油总酸值(TAN)的贡献

获取原文
获取原文并翻译 | 示例
       

摘要

Bio-oil or pyrolysis oil - a product of thermochemical decomposition of biomass under oxygen-limited conditions - holds great potential to be a substitute for nonrenewable fossil fuels. However, its high acidity, which is primarily due to the degradation of hemicelluloses, limits its applications. For the evaluation of bio-oil production and treatment, it is essential to accurately measure the acidity of bio-oil. The total acid number (TAN), which is defined as the amount of potassium hydroxide needed to titrate one gram of a sample and has been established as an ASTM method to measure the acidity of petroleum products, has been employed to investigate the acidity of bio-oil. The TAN values of different concentrations of bio-oil components such as standard solutions of acetic acid, propionic acid, vanillic acid, hydroxybenzoic acid, syringic acid, hydroxymethylfurfural, and phenol were analyzed according to the ASTM D664 standard method. This method showed the same linear relationship between the TAN values and the molar concentrations of acetic, propionic, and hydroxybenzoic acids. A different linear relationship was found for vanillic acid, due to the presence of multiple functional groups that can contribute to the TAN value. The influence of the titration solvent on the TAN values has been determined by comparing the TAN values and titration curves obtained from the standard method with results from the TAN analysis in aqueous environment and with equilibrium modeling results. Aqueous bio-oil samples with a known amount of acetic acid added were also analyzed. The additional acetic acid in bio-oil samples caused a proportional increase in the TAN values. The results of this research indicate that the TAN value of a sample with acids acting as monoprotic acids in the titration solvent can be converted to the molar concentration of total acids. For a sample containing acids that act as diprotic and polyprotic acids, however, its TAN value cannot be simply converted to the molar concentration of total acids because these acids have a stronger contribution to the TAN values than the contribution of monoprotic acids. (C) 2017 Elsevier Ltd. All rights reserved.
机译:生物油或热解油-在氧气受限的条件下生物质热化学分解的产物-具有巨大的潜力,可以替代不可再生的化石燃料。然而,其主要由于半纤维素的降解而导致的高酸度限制了其应用。为了评估生物油的生产和处理,准确测量生物油的酸度至关重要。总酸值(TAN)定义为滴定1克样品所需的氢氧化钾量,已被确定为ASTM方法来测量石油产品的酸度,已被用于研究生物酸度。 -油。根据ASTM D664标准方法分析了不同浓度的生物油成分(例如,乙酸,丙酸,香草酸,羟基苯甲酸,丁香酸,羟甲基糠醛和苯酚)的TAN值。该方法在TAN值与乙酸,丙酸和羟基苯甲酸的摩尔浓度之间显示出相同的线性关系。由于存在多个可能有助于TAN值的官能团,因此对香草酸发现了不同的线性关系。通过将标准方法获得的TAN值和滴定曲线与水性环境中TAN分析的结果以及平衡建模结果进行比较,确定了滴定溶剂对TAN值的影响。还分析了添加已知量乙酸的生物油水溶液样品。生物油样品中的额外乙酸导致TAN值成比例增加。这项研究的结果表明,在滴定溶剂中具有酸作为单质子酸的样品的TAN值可以转换为总酸的摩尔浓度。但是,对于包含充当双质子酸和多质子酸的酸的样品,其TAN值不能简单地转换为总酸的摩尔浓度,因为这些酸对TAN值的贡献要大于单质子酸的贡献。 (C)2017 Elsevier Ltd.保留所有权利。

著录项

  • 来源
    《Fuel》 |2017年第15期|171-181|共11页
  • 作者单位

    Georgia Inst Technol, Atlanta, GA 30332 USA;

    Georgia Inst Technol, Atlanta, GA 30332 USA;

    Georgia Inst Technol, Atlanta, GA 30332 USA;

    Univ Tennessee, Bredesen Ctr Interdisciplinary Res & Educ, Knoxville, TN 37996 USA|Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA;

    Georgia Inst Technol, Atlanta, GA 30332 USA|Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Total acid number (TAN); Bio-oil acidity; Switchgrass bio-oil; Biofuel;

    机译:总酸值(TAN);生物油酸度;柳枝bio生物油;生物燃料;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号