首页> 外文期刊>Fuel >Coupled fluid flow-geomechanics simulation in stress-sensitive coal and shale reservoirs: Impact of desorption-induced stresses, shear failure, and fines migration
【24h】

Coupled fluid flow-geomechanics simulation in stress-sensitive coal and shale reservoirs: Impact of desorption-induced stresses, shear failure, and fines migration

机译:应力敏感的煤和页岩储层中的流体-地质力学耦合模拟:解吸诱导应力,剪切破坏和细粒运移的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Long-term pore pressure depletion significantly alters reservoir stresses, which are known to have a substantial impact on permeability in fractured reservoirs. Increased effective stresses resulting from depletion often induce a decrease in permeability. The opposite has been observed in some reservoirs with an organic rock matrix that exhibits strong sorption-mechanical coupling. With depletion, adsorbed gas des orbs from micropores resulting in shrinkage of the rock matrix, relaxation of effective stresses, and opening of fractures. In addition, reservoir depletion results in an increased stress anisotropy, which may lead to potential reactivation of critically oriented natural fractures and shear failure. The objective of this study is to develop a reservoir simulator with a full poromechanical coupling accounting for sorption induced change of stresses, shear failure, fines production, and their effect on permeability. This paper aims to estimate the influence of the various mechanical and transport parameters affecting reservoir permeability and to predict its evolution during reservoir depletion. We compare two natural gas reservoirs with strong (San Juan coal basin) and weak (Barnett shale formation) sorption-mechanical coupling. The results of the study highlight the interplay between mechanical moduli, swelling isotherm parameters, fracture compressibility, and rock strength in determining their impact on fracture permeability evolution during depletion. We show that simple stress-dependent permeability models cannot capture permeability evolution in the presence of shear failure and fines production. A modified permeability equation is introduced to describe fines migration and shear dilation. Numerical simulation confirmed that desorption-induced strains in shales may induce changes of horizontal stresses of several MPa. These changes of stress may have a minor effect on permeability but can significantly affect horizontal stress anisotropy and should be considered while planning refracturing. (C) 2017 Elsevier Ltd. All rights reserved.
机译:长期的孔隙压力耗竭会显着改变储层应力,已知这会对裂缝性储层的渗透率产生重大影响。由耗尽引起的有效应力增加通常会导致渗透率降低。在一些具有有机岩石基质的储层中观察到了相反的情况,有机岩石基质表现出强烈的吸附-机械耦合。随着枯竭,微孔中吸附的气体会形成球形,导致岩石基质收缩,有效应力松弛和裂缝打开。另外,储层的枯竭导致应力各向异性的增加,这可能导致临界取向天然裂缝的潜在再活化和剪切破坏。这项研究的目的是开发一种具有完整的岩石力学耦合的油藏模拟器,以解决吸附引起的应力变化,剪切破坏,细粉生产及其对渗透率的影响。本文旨在估算各种力学参数和运输参数对储层渗透率的影响,并预测其在储层枯竭过程中的演化。我们比较了具有强吸附力(圣胡安煤盆地)和弱吸附力(巴内特页岩形成)的两个天然气藏-机械耦合。研究结果突出了机械模量,溶胀等温线参数,裂缝可压缩性和岩石强度之间的相互作用,以确定它们对消耗过程中裂缝渗透性演化的影响。我们表明,简单的应力依赖性渗透率模型无法在剪切破坏和细屑产生的情况下捕获渗透率的演变。引入了改进的渗透率方程来描述细粒运移和剪切膨胀。数值模拟证实,页岩中由解吸引起的应变可能引起几兆帕的水平应力变化。这些应力变化可能对渗透率影响较小,但会显着影响水平应力各向异性,因此在计划压裂时应予以考虑。 (C)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号