...
首页> 外文期刊>Fuel >Experimental study on crack propagation control and mechanism analysis of directional hydraulic fracturing
【24h】

Experimental study on crack propagation control and mechanism analysis of directional hydraulic fracturing

机译:定向水力压裂裂缝扩展控制实验研究及机理分析

获取原文
获取原文并翻译 | 示例
           

摘要

Hydraulic fracturing is mainly used for increasing large-scale coal seam permeability in coal mines to exploit coalbed methane and prevent coal and gas outbursts. However, conventional hydraulic fracturing cracks tend to propagate along the direction of maximum principal stress, which is inconsistent with reinforcement direction engineering and/or project area needs and makes identification of the orientation or specified location of increased coal seam permeability difficult. To address these problems, we have conducted physical similarity simulation experiments and numerical analysis of directional hydraulic fracturing (DHF) and obtained the crack propagation law of DHF technology. By analyzing the variation law of the maximum principal stress inside the rock mass, the crack propagation control mechanism of DHF technique is revealed. The influence of horizontal stress difference coefficients and angles between the hydraulic slotting direction and maximum principal stress direction (i.e., the hydraulic slotting deviation angle) on the crack propagation deflection is investigated. The results show that the DHF technique can achieve crack-oriented propagation along the desired direction. The maximum principal stress range in the rock mass is redistributed after slotting. A directional fracturing induction region is formed between the slots. In addition, DHF hydraulic pressure curves show a secondary fracturing stage when cracks connect the hydraulic fracturing and hydraulic slotting boreholes. Initiation pressures and values of maximum principle stress in the directional fracturing zone increase with increasing horizontal stress difference coefficients and slotting deviation angles. However, increasing the horizontal stress difference coefficient does not significantly influence the directional fracturing zone range. The results provide a reliable basis for subsequent theoretical research and engineering applications.
机译:水力压裂主要用于增加煤矿的大规模煤层渗透性,以开采煤层气并防止煤与瓦斯突出。然而,常规的水力压裂裂缝倾向于沿着最大主应力的方向传播,这与增强方向工程和/或工程区域的需求不一致,并且使得难以识别增加的煤层渗透性的方向或特定位置。为了解决这些问题,我们进行了物理相似性模拟实验和定向水力压裂(DHF)的数值分析,并获得了DHF技术的裂纹扩展规律。通过分析岩体内部最大主应力的变化规律,揭示了DHF技术的裂纹扩展控制机理。研究了水平应力差系数和水力开槽方向与最大主应力方向之间的角度(即水力开槽偏差角)对裂纹扩展变形的影响。结果表明,DHF技术可以实现沿期望方向的裂纹定向扩展。开槽后重新分配岩体中的最大主应力范围。在缝隙之间形成定向压裂诱导区域。此外,当裂缝将水力压裂孔和水力缝隙孔连接起来时,DHF水压曲线显示出第二次压裂阶段。定向压裂区的启动压力和最大主应力值随水平应力差系数和开槽偏角的增加而增加。但是,增加水平应力差系数不会显着影响定向裂缝区域范围。研究结果为后续的理论研究和工程应用提供了可靠的依据。

著录项

  • 来源
    《Fuel》 |2018年第15期|316-324|共9页
  • 作者单位

    Chongqing Univ, State Key Lab Coal Mine Disaster Dynam & Control, Chongqing 400044, Peoples R China;

    Chongqing Univ, State Key Lab Coal Mine Disaster Dynam & Control, Chongqing 400044, Peoples R China;

    Chongqing Univ, Coll Resources & Environm Sci, Chongqing 400030, Peoples R China;

    Chongqing Univ, State Key Lab Coal Mine Disaster Dynam & Control, Chongqing 400044, Peoples R China;

    Chongqing Univ, State Key Lab Coal Mine Disaster Dynam & Control, Chongqing 400044, Peoples R China;

    Chongqing Univ, State Key Lab Coal Mine Disaster Dynam & Control, Chongqing 400044, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Hydraulic fracturing; Hydraulic slotting; Crack propagation; Permeability enhancement; Coalbed methane;

    机译:水力压裂;水力开缝;裂缝扩展;渗透率提高;煤层气;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号