首页> 外文期刊>Fuel >Multicomponent conjugate heat and mass transfer in biomass materials during microwave pyrolysis for biofuel production
【24h】

Multicomponent conjugate heat and mass transfer in biomass materials during microwave pyrolysis for biofuel production

机译:微波热解生产生物燃料过程中生物质材料中的多组分共轭传热和传质

获取原文
获取原文并翻译 | 示例
           

摘要

The aim of this paper is to investigate the heating behavior of biomass materials under microwave pyrolysis process. A detailed computational fluid dynamics (CFD) model is developed based on the finite volume method using ANSYS CFX (14.0) software to describe the heat and mass transfer during the microwave processing of biomass pellets. The article presents a modeling approach for incorporating the basic fundamentals of microwave pyrolysis process in the form of source terms for mass, momentum, heat and species into the general transport equations for nitrogen and volatiles in the gas phase and wood and bio-char in the solid phase. The model covers the complex coupling between several key elements of the process including microwave heating, pyrolysis kinetics, phase change, rapid variation in mixture properties and gas phase transport. The developed CFD model is validated through the experimental trials in a custom-built microwave pyrolysis unit. The model predicts the maximum temperature, temperature rates and temperature profiles during the process. Close agreement is obtained between the results obtained from the experiments and simulations. It was found that the biomass temperature is affected by the microwave absorbed power which is a function of biomass mixture properties and the released volatile during the process. The results also indicated that increase in microwave power level increases the maximum obtained temperature; however, the amount of absorbed power within the material decreases significantly in higher temperature levels. As temperature and power requirement are vital factors in making microwave processing viable, a useful CFD tool that provides this information could be invaluable for industry.
机译:本文的目的是研究微波热解过程中生物质材料的加热行为。基于有限体积方法,使用ANSYS CFX(14.0)软件开发了详细的计算流体动力学(CFD)模型,以描述生物质颗粒微波处理过程中的传热和传质。本文提出了一种建模方法,将微波热解过程的基本原理以质量,动量,热量和物质的来源术语的形式纳入了气相中氮和挥发物以及木材中木材和生物炭的一般迁移方程。固相该模型涵盖了过程的几个关键要素之间的复杂耦合,包括微波加热,热解动力学,相变,混合物特性的快速变化和气相传输。通过定制的微波热解装置中的实验试验验证了开发的CFD模型。该模型可预测过程中的最高温度,温度速率和温度曲线。从实验和模拟获得的结果之间获得了紧密的一致性。已经发现,生物质温度受微波吸收功率的影响,微波吸收功率是生物质混合物特性和过程中释放的挥发物的函数。结果还表明,微波功率水平的提高会提高最高获得温度。但是,在较高的温度水平下,材料内的吸收功率会明显降低。由于温度和功率要求是使微波处理可行的至关重要的因素,因此提供此信息的有用的CFD工具对于工业而言可能是无价的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号