首页> 外文期刊>Fuel >Effects of natural micro-fracture morphology, temperature and pressure on fluid flow in coals through fractal theory combined with lattice Boltzmann method
【24h】

Effects of natural micro-fracture morphology, temperature and pressure on fluid flow in coals through fractal theory combined with lattice Boltzmann method

机译:天然微骨折形态,温度和压力对煤气流体流体流动的影响与晶格玻璃晶晶晶晶体理论相结合

获取原文
获取原文并翻译 | 示例
           

摘要

The fluid flow behaviors during the production of coalbed methane (CBM) are generally restricted by the preexisting natural fractures in coal seams. To better understand the effect of natural micro-fracture morphology on the flow capability, nine coals collected from Ordos Basin were subjected to optical microscope observations to obtain micro-fractures morphology. And then, the box-counting method (BCM) was used to quantify the complexity of the micro-fracture network planar distribution. Besides, the lattice Boltzmann method (LBM) was adopted to simulate the flow in the complex micro-fracture network under different pressures and temperatures. Finally, factors affecting the flow capability in micro-fracture were elaborated. The results show that the micro fractures generally present dendritic, reticular, filamentous and orthogonal structures. The natural micro-fracture morphology has a remarkable impact on flow behavior, in which the presence of dominant channels with a length of similar to 498.26 mu m and a width of similar to 10.96 mu m has a significant contribution to permeability, while the orthogonal micro-fracture network normally is not conducive to fluid flow. The fractal dimension extracted from the nine coals varies from 1.321 to 1.584, and the permeability calculated from LBM method varies from 0.147 to 0.345 D; in contrast to other studies, a non-monotonic change, an inverted U-shaped, of permeability on fractal dimension was observed. Moreover, permeability decreases as pressure increases and increases with increasing temperature due to the physical properties of methane and coal matrix. Therefore, this work may contribute to understanding the process of hydrofracturing and hydrothermal methods for improving CBM reservoirs during enhancing CBM recovery.
机译:在煤层气生产过程中的流体流动性通常受煤层中预先存在的自然骨折的限制。为了更好地了解自然微骨折形态对流动能力的影响,从鄂尔多斯盆地收集的九个煤进行光学显微镜观察,以获得微骨折形态。然后,盒计数方法(BCM)用于量化微骨折网络平面分布的复杂性。此外,采用格子Boltzmann方法(LBM)模拟不同压力和温度下复杂微骨折网络中的流动。最后,阐述了影响微骨折流动能力的因素。结果表明,微骨折通常呈现树突,网状,丝状和正交结构。天然微骨折形态对流动性具有显着影响,其中具有与498.26μm的长度相似的主干道的存在和类似于10.96 mu m的宽度对渗透性的显着贡献,而正交的微型 - 断裂网络通常不利于流体流动。从九个煤中提取的分形尺寸变化为1.321至1.584,并且由LBM方法计算的渗透率从0.147变化到0.345d;与其他研究相比,观察到非单调变化,倒置U形的渗透性对分形维数的渗透性。此外,由于压力增加并且随着甲烷和煤基质的物理性质而增加,随着温度的增加而增加,渗透性降低。因此,这项工作可能有助于理解在提高CBM恢复过程中改善CBM储存器的水力调节和水热方法的过程。

著录项

  • 来源
    《Fuel》 |2021年第2期|119468.1-119468.10|共10页
  • 作者单位

    China Univ Geosci Sch Energy Resources Beijing 100083 Peoples R China|China Univ Geosci Coal Reservoir Lab Natl Engn Res Ctr CBM Dev & Ut Beijing 100083 Peoples R China;

    China Univ Geosci Sch Energy Resources Beijing 100083 Peoples R China|China Univ Geosci Coal Reservoir Lab Natl Engn Res Ctr CBM Dev & Ut Beijing 100083 Peoples R China;

    China Univ Geosci Sch Energy Resources Beijing 100083 Peoples R China|China Univ Geosci Coal Reservoir Lab Natl Engn Res Ctr CBM Dev & Ut Beijing 100083 Peoples R China;

    China Univ Geosci Sch Water Resources & Environm Beijing 100083 Peoples R China;

    China Univ Geosci Sch Energy Resources Beijing 100083 Peoples R China|China Univ Geosci Coal Reservoir Lab Natl Engn Res Ctr CBM Dev & Ut Beijing 100083 Peoples R China;

    Univ Aberdeen Sch Engn Kings Coll Fraser Noble Bldg Aberdeen AB24 3UE Scotland;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Coal; Micro-fractures morphology; Permeability; Fractal theory; Lattice Boltzmann method;

    机译:煤;微骨折形态;渗透率;分形理论;格子玻璃板方法;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号