首页> 外文期刊>Fuel >Porous magnesia-alumina composite nanoparticle for biodiesel production
【24h】

Porous magnesia-alumina composite nanoparticle for biodiesel production

机译:多孔氧化镁 - 氧化铝复合纳米粒子用于生物柴油生产

获取原文
获取原文并翻译 | 示例
           

摘要

A facile, aerosol-based controlled synthesis of porous Mg-Al-O composite nanoparticle is demonstrated for developing solid base catalysts with high performance for transesterification of soybean oil to biodiesel. Pore size, crystallite size and chemical composition of the Mg-Al-O composite nanoparticle are tunable by design. A significantly higher surface area (by 1.8 times) and a smaller pore size (i.e., decreased by 20%) of the Mg-Al-O composite particle achieved by using the aerosol-based synthesis than the conventional method. Hybridization with Al2O3 remarkably increased surface area of the MgO particle by decreasing pore size using homogenous Al precursor or increasing pore volume via choosing heterogeneous Al precursor. The fatty acid methyl esters (FAME) yield catalyzed by Mg-Al-O composite particle was significantly higher in comparison to the results without catalysts (i.e., a maximum of 3.4x). The FAME yield was proportional to methanol-to-oil molar ratio, and the highest yield was identified at Mg/Al = 4, in accordance to the highest number of strong basic site quantified via a CO2-based temperature-programmed desorption study. Operation stability (i.e., FAME yield declined by 4%) and chemical stability (i.e., mass leaching 0.06% of total catalyst mass) were sufficiently high for the synthesized porous Mg-Al-O composite nanoparticle based on the 3-cycle test. The work establishes a prototype study of developing porous Mg-Al-O composite nanostructure by applying a gas-phase evaporation-induced self-assembly to achieve high activity and operation stability. The study also shows promise to further enhance strong basicity and corresponding catalytic activity through mechanistic understanding of the designed composite nanocatalyst.
机译:对多孔Mg-Al-o复合纳米粒子进行了舒适性的气溶胶控制合成,用于显影具有高性能的固体碱催化剂,用于将大豆油酯交换为生物柴油。 Mg-Al-O复合纳米粒子的孔径,微晶尺寸和化学组成通过设计可调。通过使用基于气溶胶基合成的Mg-Al-O复合颗粒的显着更高的表面积(18次)和较小的孔径(即,降低20%),其通过使用气溶胶基合成而不是常规方法实现的。通过使用均匀的Al前体或通过选择非均相Al前体增加孔径,与Al2O3与Al2O3的表面积显着增加了MgO颗粒的表面积。与不含催化剂的结果相比,Mg-Al-O复合颗粒催化的脂肪酸甲酯(MgS)产率显着较高(即,最大3.4倍)。由于通过基于二氧化碳的温度编程的解吸研究定量的最高数量的强碱性位点,对Mg / Al = 4鉴定了最高产率的增生率与甲醇 - 油摩尔比成比例。在合成多孔Mg-Al-o复合纳米粒子基于3循环试验,操作稳定性(即,含量下降<4%)和化学稳定性(即,总催化剂质量的质量浸出<0.06%)足够高,对于合成的多孔Mg-Al-O复合纳米粒子足够高。 。该工作通过施加气相蒸发诱导的自组装来实现多孔Mg-Al-O复合纳米结构的原型研究,以实现高活性和操作稳定性。该研究还显示了通过对设计的复合纳米催化剂的机械理解,进一步提高强碱和相应的催化活性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号