...
首页> 外文期刊>Fuel >Effects of geochemical reactions on multi-phase flow in porous media during CO_2 injection
【24h】

Effects of geochemical reactions on multi-phase flow in porous media during CO_2 injection

机译:地球化学反应在CO_2注射期间对多孔介质中多相流动的影响

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Impacts of fluid-rock geochemical reactions occurring during CO2 injection into underground formations, including CO2 geosequestration, on porosity and single-phase permeability are well documented. However, their impacts on pore structure and multiphase flow behaviour of porous media and therefore on CO2 injectivity and residual trapping potential are yet unknown. We found that CO2-saturated brine-rock interactions in a carbonate rock increased the grains roughness, increased the population of micro and macro pores and decreased the pore volume of medium size pores. These changes in pore structure led to a decrease in the sweep efficiency of the non-wetting phase (gas) during primary drainage. Furthermore, they led to an increase in the relative permeability of the non-wetting phase, a decrease in the relative permeability of the wetting phase (brine) and a reduction in the residual trapping potential of the non-wetting phase. The impacts of reactions on pore structure shifted the relative permeabilities cross point toward more water-wet condition. Finally, these reaction-induced pore structure changes caused a reduction in capillary pressure of the used carbonate rock. For CO2 underground injection applications, such changes in relative permeabilities, residual trapping potential of the non-wetting phase (CO2) and capillary pressure would reduce the CO2 storage capacity and increase the risk of CO2 leakage. Considering these fluid-rock reaction-induced changes is essential for accurate prediction/simulation of reservoir behaviour and risk analysis of the project.
机译:在CO2注射到地下形成期间发生的流体岩地球化学反应的影响,包括CO 2 Geosequestration,孔隙率和单相渗透性良好。然而,它们对多孔介质的孔隙结构和多相流动行为的影响,因此对CO 2的注射性和残余捕获电位尚不清楚。我们发现碳酸盐岩中的CO2饱和盐水岩相互作用增加了晶粒粗糙度,增加了微观孔和宏观孔的群体,并降低了介质尺寸孔的孔体积。孔隙结构的这些变化导致初级排水期间非润湿相(气体)的扫描效率降低。此外,它们导致非润湿相的相对渗透性的增加,润湿相(盐水)的相对渗透性的降低以及非润湿相的残余捕获电位的降低。反应对孔隙结构的影响变为相对渗透率的交叉点朝向更多的水湿条件。最后,这些反应诱导的孔结构改变导致二手碳酸盐岩的毛细管压力降低。对于CO2地下注射应用,这种相对渗透性的变化,非润湿相的残留捕获电位(CO 2)和毛细管压力会降低CO 2储存能力并增加二氧化碳泄漏的风险。考虑到这些流体岩反应诱导的变化对于准确预测/模拟储层行为和项目风险分析至关重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号