...
首页> 外文期刊>Fuel >Optimal immobilization of Trichoderma asperellum laccase on polymer coated Fe_3O_4@SiO_2 nanoparticles for enhanced biohydrogen production from delignified lignocellulosic biomass
【24h】

Optimal immobilization of Trichoderma asperellum laccase on polymer coated Fe_3O_4@SiO_2 nanoparticles for enhanced biohydrogen production from delignified lignocellulosic biomass

机译:聚合物涂布剂Fe_3O_4 / 2纳米粒子上的Trichoderma asperellum漆酶的最佳固定,用于增强基质的木质纤维素生物质的生物氢生产

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Recalcitrant lignin in the lignocellulosic biomass (LCB) is a major barrier in biofuel production. Thus, its removal from LCB is imperative before conversion into biofuels. Enzyme-mediated degradation of lignin is considered to be a "green approach" as it does not generate any toxic intermediates. Further, enzyme activity may be enhanced by its immobilization onto polymer-coated magnetic nanoparticle support, that enhances anchorage and enables easy recovery for reuse. Hence, in the present study Trichoderma asperellum laccase was immobilized onto Fe3O4@SiO2-chitosan nanosupport for delignification of LCB and subsequently utilized for biohydrogen production. The optimum immobilization conditions determined statistically via response surface methodology were Fe3O4@SiO2-chitosan (58.37 mg), enzyme concentration (24.11 mu g), pH (5.95), time (5.3 h) and N-ethyl-N'-(3-dimethyl aminopropyl) carbodiimide (EDAC) (1.41%) for maximum immobilization efficiency (92.41%) and yield (91.23%). The immobilized laccase was found to have higher delignification potential than the free enzyme (84.46%), with sweet sorghum stover as substrate, and could be efficiently reused up to 8 cycles. Biohydrogen yield and production rates were 2.8 mol H-2/mol reducing sugar and 25 L H-2/L-d, respectively, in a continuous stirred tank reactor. Developed Fe3O4@SiO2-chitosan particles have a high potential for use in biohydrogen production.
机译:在木质纤维素生物量(LCB)中的顽抗木质素是生物燃料生产的主要障碍。因此,在转化为生物燃料之前,它从LCB的去除是迫切的。酶介导木质素的降解被认为是“绿色方法”,因为它不会产生任何有毒中间体。此外,可以通过固定在聚合物涂覆的磁性纳米粒子载体上增强酶活性,从而增强锚固,并能够易于回收再利用。因此,在本研究中,将Trichoderma曲粒曲晶酶固定在Fe3O4-SiO 2-壳聚糖纳米口上,用于LCB的脱氨酸,随后用于生物氢生产。通过响应表面方法确定的最佳固定条件是Fe3O4-SiO 2-壳聚糖(58.37mg),酶浓度(24.11μg),pH(5.95),时间(5.3小时)和N-乙基-N' - (3-二甲基氨基丙基)碳二酰亚胺(EDAC)(1.41%),最大固定效率(92.41%)和产率(91.23%)。发现固定化的漆酶比游离酶(84.46%)具有更高的脱磷酸,甜高粱秸秆作为基质,可以有效地重复使用高达8个循环。生物氢产率和生产率分别为2.8mol H-2 / mol还原糖和25LH-2 / L-D,在连续的搅拌釜反应器中。开发的Fe3O4 @ SiO2-壳聚糖颗粒具有高潜力的生物氢生产。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号