首页> 外文期刊>Fuel >Bioconversion of hazelnut shell using near critical water pretreatment for second generation biofuel production
【24h】

Bioconversion of hazelnut shell using near critical water pretreatment for second generation biofuel production

机译:使用近临界水预处理进行榛子壳的生物转化,为第二代生物燃料生产

获取原文
获取原文并翻译 | 示例
           

摘要

The global energy deficiency and depletion of fossil fuels have raised concerns leading to a wide scale examination of alternative and renewable energy sources. Lignocellulosic biomass that is one of the renewable energy sources has major potential in the world and it has a wide variety of sources including agricultural residues such as cotton stalk, corn stover, wheat straw, etc. Including over 65% cellulose and hemicelluloses content, these materials can be hydrolyzed into monomeric sugars and then can be converted into biofuels and other industrial products.The main objective of this study is bioethanol production with bioconversion of lignocellulosic biomass, namely hazelnut shell. In order to efficiently utilize this raw material for ethanol production by degrading the lignocellulosic structure, an effective pretreatment is required. LHW, a near critical water pretreatment method, is chosen for this particular research due to its unique environmental and economic properties. The experiment design was prepared with Response Surface Estimation Method (RSM) by Design Expert software. The experiment parameters were selected as temperature (100-200 degrees C), pressure (80-200 bar) and flow rate (2-8 ml/min). The optimum condition (OC) for the process was determined as 138 degrees C, 2 ml/min and 200 bar according to the Dinitrosaliclic acid (DNS) method. Additionally, in order to achieve maximum ethanol concentration, the condition producing maximum reducing sugar content is determined. Separated hydrolysis and fermentation (SHF) process was used for bioethanol production. Enzymatic hydrolysis was conducted with a part of solid residue obtained from the maximum ethanol condition (MEC) for bioethanol production. MEC is 200 degrees C, 2 ml/min and 200 bar. Under MEC, at the end of the fermentation process maximum ethanol yield was 44.89% with 0.5 g of solid loading.The main purpose of the study is to determine the effects of different solid loading rates in the enzymatic hydrolysis stage of SHF process to ethanol production as a result of fermentation. There are several pretreatment methods for this process. It is concluded that the superior qualifies of LHW pretreatment in means of environmental friendliness, non-toxic and non-corrosive byproducts, water usage instead of other chemical additives, degradation of lignocellulosic structure and low cost were suitable for the intended purpose of bioethanol production using hazelnut shell.
机译:化石燃料的全球能源缺乏和消耗提出了令人关切的令人担忧的替代和可再生能源。木质纤维素生物量是可再生能源之一在世界上具有重大潜力,它具有各种各样的来源,包括棉茎,玉米秸秆,小麦秸秆等农业残留物,包括超过65%的纤维素和半纤维素含量,这些材料可以水解成单体糖,然后可以转化为生物燃料和其他工业产品。本研究的主要目的是具有木质纤维素生物量的生物转化的生物乙醇生产,即榛子壳。为了通过降解木质纤维素结构,有效地利用这种原料用于乙醇产生,需要有效的预处理。由于其独特的环境和经济特性,LHW是近乎临界水预处理方法,为这种特殊研究选择。通过设计专家软件用响应面估计方法(RSM)制备实验设计。选择实验参数作为温度(100-200℃),压力(80-200巴)和流速(2-8ml / min)。根据二硝基水杨酸(DNS)方法,将该方法的最佳条件(OC)确定为138℃,2mL / min和200巴。另外,为了实现最大的乙醇浓度,确定产生最大还原糖含量的条件。分离的水解和发酵(SHF)方法用于生物乙醇生产。用来自最大乙醇条件(MEC)的一部分固体残余物进行酶水解,用于生物乙醇生产。 MEC为200℃,2毫升/分钟,200架。在MEC下,在发酵过程结束时,最大乙醇产率为44.89%,固体载荷为0.5g。该研究的主要目的是确定不同固体加载率在SHF过程的酶水解阶段对乙醇生产的影响由于发酵。此过程有几种预处理方法。得出结论是,LHW预处理的卓越符合环境友好性,无毒和非腐蚀性副产品,水性使用代替其他化学添加剂,木质纤维素结构的降解和低成本适用于使用生物乙醇生产的预期目的榛子壳。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号