...
首页> 外文期刊>Fuel >Optical study on autoignition and knocking characteristics of dual-fuel engine under CI vs SI combustion modes
【24h】

Optical study on autoignition and knocking characteristics of dual-fuel engine under CI vs SI combustion modes

机译:CI与SI燃烧模式下双燃料发动机自燃和爆震特性的光学研究

获取原文
获取原文并翻译 | 示例
           

摘要

Uncontrollable autoignition with engine knock has been the main obstacle for high thermal efficiency and low CO2 emissions in downsized engines. Therefore, it is necessary to study the autoignition and knocking characteristics and reveal the similarities/differences between different combustion modes. In this study, synchronization measurement was performed through simultaneous pressure acquisition and high-speed natural flame acquisition, and knocking experiments were comparatively conducted under spark-ignition (SI) and compression-ignition (CI) conditions in a high-strength optical engine. The CI experimental results show that early ignited fuel injection leads to advanced combustion phase thus concentrated heat release. The advanced combustion phase can mitigate cyclic variation at low energy density while induce knocking combustion at high energy density. The stochastic analysis shows that CI knocking intensity mainly depends on the combustion rate whereas SI knock intensity is more random because of the stochastic end-gas autoignition. Visualized combustion images show that compared to SI combustion, the burning rate of CI combustion is much higher due to the multipoint autoignition. At low energy density, there is no pressure oscillation of CI and SI and the main reason is the low value of peak heat release rate (HRR) regardless of the autoignition. Whereas at high energy density, there are obvious two-stage HRRs for the CI knocking combustion and the high second peak HRR results in the engine knock. Further flame comparison shows that the AI flame speeds in CI and SI modes are similar but much higher than traditional SI flame speed.
机译:发动机爆震导致无法控制的自燃一直是小型发动机中高热效率和低二氧化碳排放的主要障碍。因此,有必要研究自燃和爆震特性,并揭示不同燃烧模式之间的相似性/差异性。在这项研究中,同步测量是通过同时进行压力采集和高速自然火焰采集进行的,并且在高强度光学引擎的火花点火(SI)和压缩点火(CI)条件下进行了爆震实验。 CI实验结果表明,提前点火的燃油喷射会导致燃烧提前,从而释放出大量热量。高级燃烧阶段可以减轻低能量密度下的循环变化,同时在高能量密度下引起爆震燃烧。随机分析表明,CI爆震强度主要取决于燃烧速率,而SI爆震强度则由于末端气体的自燃而更加随机。可视化燃烧图像显示,与SI燃烧相比,CI燃烧的燃烧速率由于多点自燃而高得多。在低能量密度下,CI和SI不会发生压力振荡,主要原因是与自燃无关的峰值放热率(HRR)值较低。在高能量密度下,CI爆震存在明显的两阶段HRR,而第二峰值HRR高则导致发动机爆震。进一步的火焰比较表明,CI和SI模式下的AI火焰速度相似,但远高于传统的SI火焰速度。

著录项

  • 来源
    《Fuel》 |2020年第15期|117107.1-117107.9|共9页
  • 作者

  • 作者单位

    Tianjin Univ State Key Lab Engines Tianjin 300072 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Combustion mode; Autoignition; Knocking combustion; Flame speed; Optical engine;

    机译:燃烧方式自燃;爆震燃烧;火焰速度;光学引擎;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号