...
首页> 外文期刊>Fatigue & Fracture of Engineering Materials & Structures >Acoustic emission detection of fatigue cracks in wind turbine blades based on blind deconvolution separation
【24h】

Acoustic emission detection of fatigue cracks in wind turbine blades based on blind deconvolution separation

机译:基于盲反褶积分离的风力机叶片疲劳裂纹声发射检测

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The occurrence and expansion of fatigue cracks in large wind turbine blades may lead to catastrophic blade failure. Each fatigue phase of a material has been associated with a typical set of acoustic emission (AE) signal frequency components, providing a logical base for establishing a clear connection between AE signals and the fatigue condition of a material. The relevance of efforts to relate recorded AE signals to a material's mechanical behaviour relies heavily on accurate AE signal processing. The main objective of the present study is to establish a direct correlation between the fatigue condition of a material and recorded AE signals. We introduce the blind deconvolution separation (BDS) approach because the result of AE monitoring is usually a convoluted mixture of signals from multiple sources. The method is implemented on data acquired from a fatigue test rig employing a wind turbine blade with an artificial transverse crack seeded in the surface at the base of the blade. Two different sets of fatigue loading were conducted. The convoluted signals are collected from the AE acquisition system, and the weak crack feature is extracted and analysed based on the BDS algorithm. The study reveals that the application of BDS-based AE signal analysis is an appropriate approach for distinguishing and interpreting the different fatigue damage states of a wind turbine blade. The novel methodology proposed for fatigue crack identification will allow for improved predictive maintenance strategies for the glass-epoxy blades of wind turbines. The experimental results clearly demonstrate that the AE signals generated by a fatigue crack on a wind turbine blade can be synchronously separated and identified. Characterizing and assessing fatigue conditions by AE monitoring based on BDS can prevent catastrophic failure and the development of secondary defects, as well as reduce unscheduled downtime and costs. The possibility of using AE monitoring to assess the fatigue condition of fibre composite blades is also considered.
机译:大型风力涡轮机叶片中疲劳裂纹的发生和扩展可能导致灾难性的叶片故障。材料的每个疲劳阶段都与一组典型的声发射(AE)信号频率分量相关联,为在AE信号和材料的疲劳状况之间建立清晰的联系提供了逻辑基础。使记录的AE信号与材料的机械性能相关联的努力的相关性在很大程度上取决于准确的AE信号处理。本研究的主要目的是建立材料的疲劳状态与记录的AE信号之间的直接相关性。我们引入盲解卷积分离(BDS)方法,因为AE监视的结果通常是来自多个源的信号的卷积混合。该方法是基于从疲劳测试设备获取的数据实施的,该疲劳测试设备使用风力涡轮机叶片,在叶片底部的表面上植入了人工横向裂纹。进行了两组不同的疲劳载荷。从AE采集系统中收集卷积信号,并基于BDS算法提取和分析弱裂纹特征。研究表明,基于BDS的AE信号分析的应用是区分和解释风力涡轮机叶片不同疲劳损伤状态的合适方法。提出的用于疲劳裂纹识别的新颖方法将为风力涡轮机的玻璃环氧叶片提供改进的预测维护策略。实验结果清楚地表明,由风力涡轮机叶片上的疲劳裂纹产生的AE信号可以被同步分离和识别。通过基于BDS的AE监视来表征和评估疲劳状况,可以防止灾难性故障和二次缺陷的发生,并减少计划外的停机时间和成本。还考虑了使用AE监测评估纤维复合材料叶片疲劳状况的可能性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号