首页> 外文期刊>Engineering Structures >Performance of hollow-core FRP-concrete-steel bridge columns subjected to vehicle collision
【24h】

Performance of hollow-core FRP-concrete-steel bridge columns subjected to vehicle collision

机译:空心玻璃钢混凝土钢桥柱在车辆碰撞中的性能

获取原文
获取原文并翻译 | 示例
       

摘要

This paper presents the behavior of an innovative accelerated bridge construction system of hollow-core fiber-reinforced polymer-concrete-steel (HC-FCS) columns under vehicle collisions using LS-DYNA software. The HC-FCS column consists of a concrete wall sandwiched between an outer fiber-reinforced polymer (FRP) tube and an inner steel tube. The steel tube works as a longitudinal and transverse reinforcement, and the FRP tube confines the sandwiched concrete. Detailed finite element analyses were conducted to investigate the effects of 14 different parameters including the concrete material model, the unconfined concrete compressive strength (f'c), the material strain rate, the column height-to-diameter ratio, the column diameter, the FRP confinement ratio, the diameter-to-thickness ratio of the steel tube, the column void ratio, the embedded length of the steel tube, the infilled steel tube, the top boundary conditions, the axial load level, the vehicle's velocity, and the vehicle's mass on both dynamic and static impact forces. The peak dynamic force (PDF) and the equivalent static force (ESF) were investigated. The ESF is defined as the peak of the twenty-five millisecond moving average (PTMSA). The PTMSAs of the investigated columns were compared to the ESF of the American Association of State Highway and Transportation Officials- Load and Resistance Factor Design (AASHTO-LRFD; 2670 kN (600 kips)). The AASHTO-LRFD was found to be non-conservative when the column was collided with a heavy vehicle with a mass of more than 16 tons (35 kips) or a high-speed vehicle with a velocity of more than 112 kph (70 mph). (C) 2016 Elsevier Ltd. All rights reserved.
机译:本文介绍了使用LS-DYNA软件在车辆碰撞下创新的空心纤维增强聚合物-混凝土(HC-FCS)立柱加速桥施工系统的性能。 HC-FCS柱由夹在外纤维增强聚合物(FRP)管和内钢管之间的混凝土墙组成。钢管用作纵向和横向钢筋,FRP管限制了夹层混凝土。进行了详细的有限元分析,以研究14个不同参数的影响,包括混凝土材料模型,无侧限混凝土抗压强度(f'c),材料应变率,柱高与直径比,柱直径, FRP约束比,钢管的直径与厚度比,柱空隙比,钢管的嵌入长度,填充的钢管,最高边界条件,轴向载荷水平,车辆的速度以及车辆在动态和静态冲击力上的质量。研究了峰值动态力(PDF)和等效静态力(ESF)。 ESF定义为25毫秒移动平均值(PTMSA)的峰值。将研究列的PTMSA与美国国家公路和运输官员协会的ESF(负载和阻力因子设计(AASHTO-LRFD; 2670 kN(600 kips)))进行了比较。当色谱柱与质量超过16吨(35 kips)的重型车辆或速度超过112 kph(70 mph)的高速车辆相撞时,发现AASHTO-LRFD是非保守的。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号