首页> 外文期刊>Energy & fuels >Clathrate Hydrate Formation by Water Spraying in a Methane + Ethane + Propane Gas Mixture: Search for the Rate-Controlling Mechanism of Hydrate Formation in the Presence of Methylcyclohexane
【24h】

Clathrate Hydrate Formation by Water Spraying in a Methane + Ethane + Propane Gas Mixture: Search for the Rate-Controlling Mechanism of Hydrate Formation in the Presence of Methylcyclohexane

机译:在甲烷+乙烷+丙烷混合气中水喷雾形成包合物水合物:在甲基环己烷存在下寻找水合物形成速率的控制机理

获取原文
获取原文并翻译 | 示例
           

摘要

In a previous paper (Tsuji et al. Energy Fuels 2005, 19, 869—876), we reported that the rate of clathrate hydrate formation from a simulated natural gas—a mixture of methane, ethane, and propane in a 90:7:3 molar ratio—in the presence of methylcyclohexane (MCH) significantly changed with the repetition of hydrate-forming operations and that its asymptotic level substantially exceeds the rate available in the absence of MCH. Here, we report new results in which continual chromatographic analyses of the gas-phase composition inside the hydrate-forming spray chamber gave insight into the mechanism by which the presence of MCH influences the rate of hydrate formation. The observed evolution of the gas-phase composition during each hydrate-forming operation indicates that the hydrate formed over the major portion of the operation is in structure Ⅱ, although MCH may provide guest molecules to fit into the 5~(12)6~8 cages of a structure-H hydrate. The difference in the rate of hydrate formation from operation to operation was found to be related to the difference in the initial gas-phase composition due to the preferential dissolution of ethane and propane from the gas phase into the liquid MCH phase before the inception of hydrate formation; the higher the initial concentrations of ethane and propane in the gas phase are, the higher the rate of successive hydrate formation is.
机译:在先前的论文(Tsuji等人,Energy Fuels 2005,19,869-876)中,我们报告了由模拟天然气(甲烷,乙烷和丙烷的混合物以90:7的比例)形成包合物水合物的速率:摩尔比为3-在甲基环己烷(MCH)存在下会随着水合物形成操作的重复而发生显着变化,并且其渐进水平大大超过在没有MCH的情况下可用的速率。在这里,我们报告了新的结果,其中对水合物形成喷雾室内的气相组成进行连续色谱分析,从而深入了解了MCH的存在影响水合物形成速率的机理。观察到的在每次水合物形成过程中气相组成的演变表明,尽管MCH可能提供客体分子以适合5〜(12)6〜8,但在大部分操作过程中形成的水​​合物仍处于结构Ⅱ中。 -H水合物的笼子。发现操作之间水合物形成速率的差异与初始气相组成的差异有关,这是由于在水合物开始之前乙烷和丙烷从气相优先溶解到液相MCH相中编队气相中乙烷和丙烷的初始浓度越高,连续水合物形成的速率就越高。

著录项

  • 来源
    《Energy & fuels》 |2007年第2期|p.545-553|共9页
  • 作者单位

    Toyota Motor Corp., 1 Toyota-cho, Toyota-shi, Aichi Prefecture 471-8571, Japan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 TK-;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号