首页> 外文期刊>Energy & fuels >Effects of Salinity on Oil Recovery (the 'Dilution Effect'): Experimental and Theoretical Studies of Crude Oil/Brine/Carbonate Surface Restructuring and Associated Physicochemical Interactions
【24h】

Effects of Salinity on Oil Recovery (the 'Dilution Effect'): Experimental and Theoretical Studies of Crude Oil/Brine/Carbonate Surface Restructuring and Associated Physicochemical Interactions

机译:盐度对石油采收率的影响(“稀释效应”):原油/盐水/碳酸盐表面重构和相关物理化学相互作用的实验和理论研究

获取原文
获取原文并翻译 | 示例
           

摘要

The primary aim of this study was to investigate the "dilution effect", where dilution of the ionic concentration of the fluid injected into oil wells has been found to enhance oil recovery. We have measured crude oil/brine/carbonate surface (calcite) interactions using a variety of dynamic techniques including contact angles, surface forces apparatus, atomic force microscopy, interfacial tension, X-ray photoelectron spectroscopy, and other physical and chemical surface characterization techniques. The effects due to different brine (ionic electrolyte) solutions and temperatures, as well as the dynamics (time dependence) of these effects, were investigated. Ionic strengths varied from pure water to 350 000 ppm, and temperatures varied from 20 to 75 degrees C. We found that upon exchanging solutions (as occurs for waterflooding using dilute solutions), three different dynamic processes occur that have very different time scales: (1) the initial, rapid (seconds to minutes) physical ion exchange with the surfaces that locally changes the surface charge/potential and, hence, the double-layer and hydration forces, (2) the local electrochemical dissolution and restructuring of the surfaces (minutes to hours), which is also often accompanied by the desorption of preexisting organic-ionic layers on the mineral surface that come off as visible flakes with the oil, and (3) the large-scale, diffusion-rate-controlled restructuring leading to macroscopic changes in rock morphology (months to years). We conclude that the "dilution effect" is in part due to the well-known colloidal interaction forces (electric double-layer, hydrophilic-hydration, and van der Waals). In addition, our experiments reveal (electro)chemical reactions involving dissolution, pitting, adsorption, and restructuring of the calcite surfaces, which increases their roughness (cf the geological process of "pressure solution"). Both the colloidal forces and surface roughening and restructuring act to reduce the adhesion of the crude oil/brine interface to the calcite/brine interface (across the thin aqueous or "water" film), which in turn reduces the water-side contact angle (increasing the water-wettability and, presumably, oil recovery), with increasing dilution. These two contributions reduced colloidal forces and surface roughening appear to be essential for the "dilution effect" to be effective at all solution concentrations from formation water to pure water. We propose a semiquantitative model to explain the "dilution effect" based on a form of the well established extended-Derjaguin-Landau-Verwey-Overbeek theory for the colloidal interactions between the crude oil and carbonate surface across brine of different concentrations and a modified Young-Dupre equation that accounts for the effects of surface roughness. We present the "dilution effect" in terms of "wettability maps" for the calculated (effective) adhesion energy of the crude oil/brine/carbonate system as a function of brine concentration (from formation water down to the infinite-dilution [i.e., pure water] limit).
机译:这项研究的主要目的是研究“稀释作用”,发现注入油井的流体中离子浓度的稀释可以增强油的采收率。我们已经使用各种动态技术测量了原油/盐水/碳酸盐表面(方解石)的相互作用,包括接触角,表面力装置,原子力显微镜,界面张力,X射线光电子能谱以及其他物理和化学表面表征技术。研究了由于盐水(离子电解质)溶液和温度不同而产生的影响,以及这些影响的动力学(时间依赖性)。离子强度从纯净水到35万ppm,温度从20到75摄氏度不等。我们发现,在交换溶液时(使用稀溶液注水时会发生这种情况),会发生三种不同的动态过程,它们的时标非常不同: 1)与表面的初始快速(数秒至数分钟)物理离子交换,局部改变表面电荷/电势,进而改变双层和水合力;(2)表面的局部电化学溶解和重组(分钟至数小时),这通常还伴随着矿物表面上先前存在的有机离子层的解吸,并随油一起以可见的薄片状脱落;(3)大规模,受扩散速率控制的重组导致岩石形态的宏观变化(数月至数年)。我们得出结论,“稀释效应”部分归因于众所周知的胶体相互作用力(双电层,亲水水合和范德华力)。另外,我们的实验还揭示了(化学)化学反应,涉及方解石表面的溶解,点蚀,吸附和重组,从而增加了它们的粗糙度(参见“压力溶液”的地质过程)。胶体力和表面粗糙化和结构调整都可降低原油/盐水界面与方解石/盐水界面的粘着力(横跨水或“水”薄膜),从而减小了水侧接触角(随稀释度的增加而增加了水的润湿性,并可能增加了油的回收率)。这两种作用减小了胶体力和表面粗糙化,对于使“稀释效应”在从地层水到纯净水的所有溶液浓度下均有效,看来是必不可少的。我们提出了一个半定量模型来解释“稀释效应”,该模型基于已建立的扩展的Derjaguin-Landau-Verwey-Overbeek理论的形式,该理论用于原油和碳酸盐表面在不同浓度的盐水和改性扬子之间的胶体相互作用。 -Dupre方程,说明表面粗糙度的影响。我们用“润湿性图”来表示“稀释效应”,作为原油/盐水/碳酸盐体系的计算(有效)附着力与盐水浓度的函数(从地层水到无限稀释[即,纯净水]限制)。

著录项

  • 来源
    《Energy & fuels》 |2017年第9期|8925-8941|共17页
  • 作者单位

    Univ Calif Santa Barbara, Dept Chem Engn, Santa Barbara, CA 93106 USA;

    Univ Calif Santa Barbara, Dept Chem Engn, Santa Barbara, CA 93106 USA|Ben Gurion Univ Negev, Jacob Blaustein Inst Desert Res, Zuckerberg Inst Water Res, Sede Boqer Campus, IL-84990 Midreshet Ben Gurion, Ben Gurion, Israel;

    Univ Calif Santa Barbara, Dept Chem Engn, Santa Barbara, CA 93106 USA;

    Univ Calif Santa Barbara, Dept Chem Engn, Santa Barbara, CA 93106 USA;

    Univ Calif Santa Barbara, Dept Chem Engn, Santa Barbara, CA 93106 USA;

    Saudi Aramco, EXPEC ARC, Dhahran 34465, Saudi Arabia;

    Univ Calif Santa Barbara, Dept Chem Engn, Santa Barbara, CA 93106 USA;

    Univ Calif Santa Barbara, Dept Chem Engn, Santa Barbara, CA 93106 USA;

    Univ Calif Santa Barbara, Dept Earth Sci, Santa Barbara, CA 93106 USA;

    Saudi Aramco, EXPEC ARC, Dhahran 34465, Saudi Arabia;

    Univ Calif Santa Barbara, Dept Chem Engn, Santa Barbara, CA 93106 USA|Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA;

    Saudi Aramco, EXPEC ARC, Dhahran 34465, Saudi Arabia;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号