...
首页> 外文期刊>Journal of Natural Gas Geoscience >Transparent machine learning provides insightful estimates of natural gas density based on pressure, temperature and compositional variables
【24h】

Transparent machine learning provides insightful estimates of natural gas density based on pressure, temperature and compositional variables

机译:透明机器学习提供基于压力,温度和组成变量的天然气体密度的富有洞察力估算

获取原文
           

摘要

Machine-learning algorithms are widely used to predict the physical properties of natural gas, but most techniques involve establishing correlations between the influencing variables. In the case of neural networks these correlations tend to be obscured or hidden. The recently-introduced transparent open box (TOB) learning network applies an optimized, data-matching methodology that does not involve correlations. A large dataset, consisting 4512 compiled public-domain records incorporating just three of several influencing variables: molecular weight; pseudo-reduced pressure (Ppr); and, pseudo-reduced temperature (Tpr), is evaluated to predict gas density. For a mixture of gases, averages of the critical temperatures and critical pressures of its component gases are used to derivePprandTpr. A gas cannot be readily liquefied by applying pressure when it is above its critical temperature. The critical pressure of a gas is the vapor pressure at its critical temperature. The three influencing variables are related to natural gas density by complex non-linear relationships. An artificial neural network (ANN) and a TOB network both achieve highly accurate predictions of natural gas density for this dataset, but the ANN achieves slightly higher statistical prediction accuracy across the full gas density range evaluated. However, ANN and TOB complement each other in terms of the information and insight they provide regarding the underlying system. TOB offers tangible benefits when predicting natural gas properties by revealing details of the matched data records involved and their exact contributions to each prediction. The mathematical basis of TOB's rigorous two-stage approach is straightforward, yet it yields predictions of high accuracy for the highly non-linear systems associated with natural gas behaviour. Its methodology also identifies regions of a dataset prone to underfitting and/or overfitting and avoids unjustified extrapolations.
机译:机器学习算法广泛用于预测天然气的物理性质,但大多数技术涉及在影响变量之间建立相关性。在神经网络的情况下,这些相关性倾向于被遮挡或隐藏。最近引入的透明开箱(TOB)学习网络应用了不涉及相关性的优化的数据匹配方法。一个大型数据集,包括仅包含几种影响变量中的三个的4512个汇编的公共域记录:分子量;伪减压(PPR);并且,评估伪降低的温度(TPR)以预测气体密度。对于气体的混合物,其组分气体的临界温度和临界压力的平均值用于衍生物。当高于其临界温度时,通过施加压力就不能容易地液化气体。气体的临界压力是其临界温度下的蒸气压。三种影响变量通过复杂的非线性关系与天然气密度有关。人工神经网络(ANN)和TOB网络均可实现对该数据集的天然气体密度的高精度预测,但是ANN在评估的全气体密度范围内实现略高的统计预测精度。但是,在他们提供关于基础系统的信息和洞察力方面,ANN和TOB相互补充。 Tob通过透露所涉及的匹配数据记录的详细信息以及对每个预测的确切贡献来预测天然气性能时提供有形的益处。 ToB严格的两阶段方法的数学基础是简单的,但它产生了与天然气行为相关的高度非线性系统的高精度的预测。其方法还识别数据集的区域容易抵抗和/或过度装箱并避免不合理的外推。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号