...
首页> 外文期刊>Quantum Beam Science >In Situ Observation for Deformation-Induced Martensite Transformation (DIMT) during Tensile Deformation of 304 Stainless Steel Using Neutron Diffraction. PART I: Mechanical Response
【24h】

In Situ Observation for Deformation-Induced Martensite Transformation (DIMT) during Tensile Deformation of 304 Stainless Steel Using Neutron Diffraction. PART I: Mechanical Response

机译:使用中子衍射在304不锈钢的拉伸变形过程中变形诱导的马氏体转化(DIMT)的原位观察。第一部分:机械反应

获取原文
           

摘要

304 stainless steel is one of the most common stainless steels due to its excellent corrosion resistance and mechanical properties. Typically, a good balance between ductility and strength derives from deformation-induced martensite transformation (DIMT), but this mechanism has not been fully explained. In this study, we conducted in situ neutron diffraction measurements during the tensile deformation of commercial 304 stainless steel (at room temperature) by means of a Time-Of-Flight type neutron diffractometer, iMATERIA (BL20), at J-PARC MLF (Japan Proton Accelerator Research Complex, Materials and Life Science Experimental Facility), Japan. The fractions of -(BCC) and -(HCP) martensite were quantitatively determined by Rietveld-texture analysis, as well as the anisotropic microstrains. The strain hardening behavior corresponded well to the microstrain development in the austenite phase. Hence, the authors concluded that the existence of martensite was not a direct cause of hardening, because the dominant austenite phase strengthened to equivalent values as in the martensite phase. Moreover, the transformation-induced plasticity (TRIP) mechanism in austenitic steels is different from that of low-alloy bainitic TRIP steels.
机译:304不锈钢是由于其优异的耐腐蚀性和机械性能,是最常见的不锈钢之一。通常,延展性和强度之间的良好平衡来自变形诱导的马氏体转化(DIMT),但该机制尚未得到充分解释。在这项研究中,我们通过在J-PARC MLF(日本)(日本)在商业304不锈钢(室温下)的拉伸变形期间,在商业304不锈钢(室温)的拉伸变形期间进行了原位中子衍射测量。 Proton Accelerator研究复杂,材料和生命科学实验设施),日本。通过Rietveld纹理分析以及各向异性微威尔定量地确定 - (BCC)和 - (HCP)马氏体的级分,以及各向异性微威尔。应变硬化行为与奥氏体相中的微纹理显影相对应。因此,作者得出结论,马氏体的存在不是硬化的直接原因,因为主要的奥氏体相加强到马氏体相中的等同值。此外,奥氏体钢中的转化诱导的塑性(跳闸)机理与低合金贝氏体钢钢的不同。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号