...
首页> 外文期刊>Ocean Science Discussions >Variability of the thermohaline structure and transport of Atlantic water in the Arctic Ocean based on NABOS (Nansen and Amundsen Basins Observing System) hydrography data
【24h】

Variability of the thermohaline structure and transport of Atlantic water in the Arctic Ocean based on NABOS (Nansen and Amundsen Basins Observing System) hydrography data

机译:基于Nabos(南森和Amundsen盆地观测系统)水文数据的北冰海洋热卤素结构与大西洋运输的可变性

获取原文
           

摘要

Conductivity–temperature–depth (CTD) transects across continental slope of the Eurasian Basin and the St. Anna Trough performed during NABOS (Nansen and Amundsen Basins Observing System) project in 2002–2015 and a?transect from the 1996 Polarstern expedition are used to describe the temperature and salinity characteristics and volume flow rates (volume transports) of the current carrying the Atlantic water (AW) in the Arctic Ocean. The variability of the AW on its pathway along the slope of the Eurasian Basin is investigated. A?dynamic Fram Strait branch of the Atlantic water (FSBW) is identified in all transects, including two transects in the Makarov Basin (along 159°E), while the cold waters on the eastern transects along 126, 142, and 159°E, which can be associated with the influence of the Barents Sea branch of the Atlantic water (BSBW), were observed in the depth range below 800m and had a?negligible effect on the spatial structure of isopycnic surfaces. The geostrophic volume transport of AW decreases farther away from the areas of the AW inflow to the Eurasian Basin, decreasing by 1 order of magnitude in the Makarov Basin at 159°E, implying that the major part of the AW entering the Arctic Ocean circulates cyclonically within the Nansen and Amundsen basins. There is an absolute maximum of θmax (AW core temperature) in 2006–2008 time series and a?maximum in 2013, but only at 103°E. Salinity S(θmax) (AW core salinity) time series display a?trend of an increase in AW salinity over time, which can be referred to as an?AW salinization in the early 2000s. The maxima of θmax and S(θmax) in 2006 and 2013 are accompanied by the volume transport maxima. The time average geostrophic volume transports of AW are 0.5Sv in the longitude range 31–92°E, 0.8Sv in the St. Anna Trough, and 1.1Sv in the longitude range 94–107°E.
机译:电导率 - 温度深度(CTD)在2002 - 2015年在Nabos(南肯和Amundsen盆地观察系统)项目中跨越欧亚盆地的大陆坡和圣安娜槽的横断面,从1996年的偏光态探险队横断使用描述在北冰洋中携带大西洋水(AW)的电流的温度和盐度特性和体积流量(体积传输)。调查了沿着欧亚盆地坡途径的武器的可变性。 A的动态FRAM海峡部分支在所有横断面都识别出大西洋水​​(FSBW),包括Makarov盆地(沿159°E)中的两个横断面,而东部的冷水沿126,142和159°E横断在深度范围内观察到大西洋水(BSBW)的低温水分(BSBW)的影响有关的影响,可以在低于800米的深度范围内有关,并且对等泛表面的空间结构产生不计的影响。 AW的热点批量运输越远离欧亚盆地的AW流入的区域,在159°E的Makarov盆地中减少了1级数量级,这意味着进入北极海洋的AW的主要部分循环循环循环在南森和Amundsen盆地内。 2006 - 2008年时间序列和A的绝对最大的θmax(核心温度)和2013年最多,但仅在103°E时。盐度S(θmax)(AW核心盐度)时间序列显示出a?AW盐度随时间增加的趋势,这可以称为2000年代初的盐化。 2006和2013年θmax和s(θmax)的最大值伴随着体积传输最大值。 AW的时间平均地球节动脉输送在51-92°E,0.8SV的经度范围内为0.5SV,在54-107°E的经度范围内为1.1SV。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号