...
首页> 外文期刊>Molecules >Synergistic Approach of Ultrafast Spectroscopy and Molecular Simulations in the Characterization of Intramolecular Charge Transfer in Push-Pull Molecules
【24h】

Synergistic Approach of Ultrafast Spectroscopy and Molecular Simulations in the Characterization of Intramolecular Charge Transfer in Push-Pull Molecules

机译:超快光谱和分子模拟在推拉分子中分子内电荷转移表征的协同方法

获取原文
           

摘要

The comprehensive characterization of Intramolecular Charge Transfer (ICT) stemming in push-pull molecules with a delocalized π-system of electrons is noteworthy for a bespoke design of organic materials, spanning widespread applications from photovoltaics to nanomedicine imaging devices. Photo-induced ICT is characterized by structural reorganizations, which allows the molecule to adapt to the new electronic density distribution. Herein, we discuss recent photophysical advances combined with recent progresses in the computational chemistry of photoactive molecular ensembles. We focus the discussion on femtosecond Transient Absorption Spectroscopy (TAS) enabling us to follow the transition from a Locally Excited (LE) state to the ICT and to understand how the environment polarity influences radiative and non-radiative decay mechanisms. In many cases, the charge transfer transition is accompanied by structural rearrangements, such as the twisting or molecule planarization. The possibility of an accurate prediction of the charge-transfer occurring in complex molecules and molecular materials represents an enormous advantage in guiding new molecular and materials design. We briefly report on recent advances in ultrafast multidimensional spectroscopy, in particular, Two-Dimensional Electronic Spectroscopy (2DES), in unraveling the ICT nature of push-pull molecular systems. A theoretical description at the atomistic level of photo-induced molecular transitions can predict with reasonable accuracy the properties of photoactive molecules. In this framework, the review includes a discussion on the advances from simulation and modeling, which have provided, over the years, significant information on photoexcitation, emission, charge-transport, and decay pathways. Density Functional Theory (DFT) coupled with the Time-Dependent (TD) framework can describe electronic properties and dynamics for a limited system size. More recently, Machine Learning (ML) or deep learning approaches, as well as free-energy simulations containing excited state potentials, can speed up the calculations with transferable accuracy to more complex molecules with extended system size. A perspective on combining ultrafast spectroscopy with molecular simulations is foreseen for optimizing the design of photoactive compounds with tunable properties.
机译:综合表征在带有分子化π-电子中的推挽分子中的分子内电荷转移(ICT)对于有机材料的定制设计值得注意,从光伏应用到纳米胺类成像装置的广泛应用。光诱导的ICT的特征在于结构重组,其允许分子适应新的电子密度分布。在此,我们讨论最近的光物理预付款结合光活性分子集合的计算化学中的最新进展。我们专注于对飞秒瞬态吸收光谱(TAS)的讨论,使我们能够遵循从局部激发(LE)状态到ICT的过渡,并了解环境极性如何影响辐射和非辐射衰减机制。在许多情况下,电荷转移过渡伴随着结构重排,例如扭曲或分子平坦化。在复杂分子和分子材料中发生的电荷转移准确预测的可能性是指导新的分子和材料设计方面的巨大优势。我们简要介绍了超快多维光谱,特别是二维电子光谱(2DES)的最近进步,在解开推拉分子系统的ICT性质中解开。在光诱导的分子转变的原子水平的理论描述可以采用可合理的精度来预测光活性分子的性质。在这一框架中,审查包括讨论了多年来提供的模拟和建模的进步,这些框架在多年来提供了关于光透明,排放,电荷运输和衰变途径的重要信息。与时间依赖的(TD)框架耦合的密度泛函理论(DFT)可以描述有限系统尺寸的电子特性和动态。最近,机器学习(ML)或深度学习方法以及包含激励状态电位的自由能模拟,可以加速计算,以可转移的精度与具有扩展系统尺寸的更复杂的分子。预计将超快光谱与分子模拟结合的透视,以优化具有可调谐性能的光活性化合物的设计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号