...
首页> 外文期刊>The Astrophysical journal >VECTOR MAGNETIC FIELDS AND ELECTRIC CURRENTS FROM THE IMAGING VECTOR MAGNETOGRAPH
【24h】

VECTOR MAGNETIC FIELDS AND ELECTRIC CURRENTS FROM THE IMAGING VECTOR MAGNETOGRAPH

机译:矢量成像的矢量磁场和电流

获取原文
           

摘要

First, we describe a general procedure to produce high-quality vector magnetograms using the Imaging Vector Magnetograph (IVM) at Mees Solar Observatory. Two IVM effects are newly discussed and taken into account: (1) the central wavelength of the Fabry-Pérot is found to drift with time as a result of undiagnosed thermal or mechanical instabilities in the instrument; (2) the Stokes V-sign convention built into the IVM is found to be opposite to the conventional definition used in the study of radiative transfer of polarized radiation. At the spatial resolution 2'' × 2'', the Stokes Q, U, V uncertainty reaches ~1 × 10–3 to 5 × 10–4 in time-averaged data over 1 hr in the quiet Sun. When vector magnetic fields are inferred from the time-averaged Stokes spectral images of FeI 6302.5 ?, the resulting uncertainties are on the order of 10 G for the longitudinal fields (B ∥), 40 G for the transverse field strength (B ⊥) and ~9° for the magnetic azimuth (). The magnetic field inversion used in this work is the "Triplet" code, which was developed and implemented in the IVM software package by the late B. J. LaBonte. The inversion code is described in detail in the Appendix. Second, we solve for the absolute value of the vertical electric current density, |Jz |, accounting for the above IVM problems, for two different active regions. One is a single sunspot region (NOAA 10001 observed on 2002 June 20) while the other is a more complex, quadrupolar region (NOAA10030 observed on 2002 July 15). We use a calculation that does not require disambiguation of 180° in the transverse field directions. The |Jz | uncertainty is on the order of ~7.0 mA m–2. The vertical current density increases with increasing vertical magnetic field. The rate of increase is about 1-2 times as large in the quadrupolar NOAA 10030 region as in the simple NOAA 10001, and it is more spatially variable over NOAA 10030 than over NOAA 10001.
机译:首先,我们描述了使用Mees太阳天文台的成像矢量磁图仪(IVM)生成高质量矢量磁图的一般程序。新讨论并考虑了两个IVM效应:(1)由于未诊断出仪器的热或机械不稳定性,发现Fabry-Pérot的中心波长随时间漂移; (2)发现,IVM中内置的Stokes V-sign约定与研究极化辐射的辐射转移所使用的常规定义相反。在空间分辨率为2''×2''的情况下,在安静的太阳下经过1小时的时间平均数据,斯托克斯Q,U,V不确定性达到〜1×10–3至5×10–4。当从FeI 6302.5?的时间平均斯托克斯光谱图像推断出矢量磁场时,纵向磁场(B∥)的不确定度约为10 G,横向磁场强度(B⊥)的不确定度约为40G。磁方位角(〜9°)。这项工作中使用的磁场反转是“ Triplet”代码,该代码由已故的B. J. LaBonte在IVM软件包中开发和实现。反向代码在附录中有详细描述。其次,我们针对两个不同的有源区域,解决了上述IVM问题,求出垂直电流密度的绝对值| Jz |。一个是单个黑子区域(2002年6月20日观测到NOAA 10001),另一个是更复杂的四极区域(2002年7月15日观测到NOAA10030)。我们使用的计算不需要在横向磁场方向上进行180°的消歧。 | Jz |不确定度约为〜7.0 mA m-2。垂直电流密度随着垂直磁场的增加而增加。在四极NOAA 10030区域中,其增加速率约为简单NOAA 10001的1-2倍,并且在NOAA 10030上的空间变化比在NOAA 10001上的空间变化更大。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号