...
首页> 外文期刊>Hereditas >Dispersal in Mastomys natalensis mice: use of fine‐scale genetic analyses for pest management
【24h】

Dispersal in Mastomys natalensis mice: use of fine‐scale genetic analyses for pest management

机译:分散在Mastomys natalensis小鼠中:精细遗传分析在有害生物管理中的应用

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Population genetic methods offer information on the degree of genetic diversity in individuals, social groups, family groups, and populations, as well as genetic similarities and differences. Factors contributing to such diversity include population size and density, population fragmentation, dispersal (including reproductive success of migrants), and social and mating structure. Therefore, population genetic methods have become a valuable augmentation to field experiments. Capture–mark–recapture experiments (CMR) can be time consuming, difficult to perform, and are often restricted to small areas. Dispersal behaviour across larger areas is difficult to study as recapture probability decreases with geographic distance. Although the population genetic approach has been used successfully for decades to characterize wild populations, it has only recently become sufficiently sophisticated to be applied to pest management (Rollins et al. 2006).The African multimammate mouse, Mastomys natalensis, is the major rodent pest in sub-Saharan Africa. It regularly causes severe agricultural damage, with 50–100% harvest losses in some outbreak years (Mwanjabe et al. 2002). M. natalensis occurs in natural grasslands, bushy areas, cultivated areas and human habitations. It exhibits yearly population cycles and irregular outbreaks, which are strongly related to rainfall (Leirs et al. 1994). Within one year, population densities may vary by a factor of 20 (Leirs 1995; Mwanjabe et al. 2002).Earlier studies in Morogoro, Tanzania (Leirs et al. 1993, 1994; Leirs 1995; Julliard et al. 1999), have resulted in a thorough basic knowledge of the local population ecology and the development of population dynamic models (Leirs et al. 1997a; Stenseth et al. 2001). These studies have contributed greatly to the improvement of pest management strategies. In Morogoro, the main breeding season lasts from April–May until September, and females produce on average five to six litters of 11–12 young (Leirs et al. 1993). There is multiple mating by both males and females. Multiple paternity occurs frequently and there is a large variation in male reproductive success (Kennis et al. 2008). In the breeding season, relatively many males die and the adult female:male sex ratio becomes 2.5–9 (Leirs 1995). Generally the lowest population densities (both sexes) are observed in June, sometimes less than two individuals per ha. There is generally little overlap between consecutive generations. In years with abundant rainfall, however, two generations can occur within one year, resulting in outbreaks. (This was not the case for the year sampled in this study).Dispersal rates and distances over the course of one generation are high. Between September and December, the monthly immigration rate for a 1 ha area is about 24% (Leirs 1995). As a result, the fraction of locally-born (1 ha) breeding individuals is only 0.4–12% (Leirs et al. 1993). About 1% (85/7650) of the animals captured in various field plots (7.9 ha in total) from a 125 ha area in Morogoro consisted of known dispersers with no clear sex bias (unpubl. data). Fifteen percent of these crossed a distance of more than 400 m (62% of the plot pairs separated by this distance). Females are sedentary during the middle of the breeding season, but show home range displacement at the start and at the end of the season (Leirs 1995). Sexually active males migrate slightly farther than non-breeding males (Leirs 1995).In this study, fine-scale genetic analyses were conducted on a spatial scale smaller than individual M. natalensis dispersal, using samples from a CMR study conducted in Morogoro between March 1998 and March 2002. The primary goal was to clarify to what extent population genetics can improve insight into the dispersal behaviour of M. natalensis. A detailed understanding of dispersal is vital for the improvement of pest management strategies (Rollins et al. 2006), especially when eradicated animals are quickly replace
机译:人口遗传方法提供有关个人,社会群体,家庭群体和人口的遗传多样性程度以及遗传相似性和差异性的信息。造成这种多样性的因素包括人口规模和密度,人口分散,分散(包括移民的生殖成功)以及社会和交配结构。因此,种群遗传学方法已经成为田间试验的宝贵补充。捕获标记重新捕获实验(CMR)可能很耗时,难以执行,并且通常仅限于较小的区域。由于重新捕获的概率随地理距离的增加而降低,因此很难研究在较大区域上的分散行为。尽管种群遗传学方法已经成功地用于表征野生种群了数十年,但它直到最近才变得足够复杂,可以应用于害虫管理(Rollins等人,2006年)。非洲大型哺乳动物鼠Mastomys natalensis是主要的啮齿动物害虫。在撒哈拉以南非洲。它经常造成严重的农业破坏,在某些暴发年份会损失50-100%的收成(Mwanjabe等,2002)。纳塔霉菌发生在天然草原,灌木丛地区,耕地和人类居住区。它表现出每年的人口周期和不规律的暴发,这与降雨密切相关(Leirs等,1994)。在一年之内,人口密度可能相差20倍(Leirs 1995; Mwanjabe et al.2002)。坦桑尼亚莫罗哥罗的早期研究(Leirs et al.1993,1994; Leirs 1995; Julliard et al.1999)从而获得了对当地人口生态学和人口动态模型发展的透彻的基础知识(Leirs等,1997a; Stenseth等,2001)。这些研究为改进害虫管理策略做出了巨大贡献。在莫罗哥罗,主要繁殖季节从四月至五月一直持续到九月,雌性平均每十一至十二岁幼仔产五至六只幼仔(Leirs等,1993)。雄性和雌性都有多次交配。多重亲子关系经常发生,男性生殖成功率差异很大(Kennis等,2008)。在繁殖季节,相对多的男性死亡,成年女性与男性的性别比变为2.5–9(Leirs 1995)。通常,在6月观察到最低的人口密度(包括性别),有时每公顷少于两个人。连续几代之间通常几乎没有重叠。但是,在降雨充沛的年份,一年内可能发生两代人,导致暴发。 (本研究中采样的年份并非如此)一代人的散布率和距离很高。在9月和12月之间,1公顷地区的每月移民率约为24%(Leirs 1995)。结果,本地出生(1公顷)繁殖个体的比例仅为0.4–12%(Leirs等,1993)。在Morogoro的125公顷地区的各种田间地块(总计7.9公顷)中捕获的动物中,约有1%(85/7650)由没有明显性别偏见的已知分散体组成(公开数据)。其中的15%跨越了超过400 m的距离(62%的地块对以该距离分开)。雌性在繁殖季节的中期久坐不动,但在季节开始和结束时表现出家庭范围的位移(Leirs 1995)。有性活动的雄性比未育种的雄性迁移的距离稍远(Leirs 1995)。在这项研究中,使用了来自莫罗戈罗(Morrogoro)在三月间进行的CMR研究的样本,在较小的空间尺度上进行了精细的遗传分析。 1998年和2002年3月。主要目标是阐明种群遗传学可以在多大程度上改善对纳塔氏梭菌的传播行为的了解。对传播的详细了解对于改进害虫管理策略至关重要(Rollins等人,2006年),尤其是在快速替代已消灭的动物时

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号