...
首页> 外文期刊>Hereditas >Transpositional reactivation of two LTR retrotransposons in rice‐Zizania recombinant inbred lines (RILs)
【24h】

Transpositional reactivation of two LTR retrotransposons in rice‐Zizania recombinant inbred lines (RILs)

机译:水稻-Zizania重组自交系(RILs)中两个LTR逆转座子的转座活化

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Transposable elements (TEs) which include transposons (class II TEs) and retrotransposons (class I TEs) are ubiquitous genomic components of all studied eukaryotes, and are particularly abundant in plants. Retrotransposons transpose via an RNA intermediate by a “copy-and-paste” mechanism (Bennetzen 2000). As a result, they are a major cause for genome size difference between related plant species. For example, about 17–22% of the rice genome is occupied by retrotransposons, and the proportions are even greater in plants with large genomes like Zea mays (> 80%) and common wheat (≈ 90%) (McCarthy et al. 2002; Gao et al. 2004; Kashkush et al. 2007). Retrotransposons can be classified into two major categories, i.e. LTR (long terminal repeat) and non-LTR retrotransposons (Bennetzen 2000). LTR retrotransposons can be further divided into two major groups, Ty1-copia-like and Ty3-gypsy-like, based on the order of the internal domains (Bennetzen 2000).Mounting evidence has indicated that TEs have contributed significantly to the evolution of genome structure and function. TEs can be transpositionally activated and produce insertional mutagenesis and enhance ectopic genomic recombination under various biotic and abiotic stresses, such as tissue culture, pathogen attack, wounding and cold stress (Wessler et al. 1995; Grandbastien 1998; Lisch 2007; Shapiro 2010). McClintock envisioned in the 1980s that species crossing represents a genetic stress which may cause reactivation of quiescent TEs in parental species and cause genomic restructuring (McClintock 1984). Indeed, accumulating though circumstantial evidence indicated that at least in certain species crossings, previously cryptic parental TEs can be transcriptionally and/or transpositionally reactivated (O'Neill et al. 1998; Labrador et al. 1999; Liu and Wendel 2000; Shan et al. 2005; Ungerer et al. 2006). In addition, the phenomenon of hybrid dysgenesis that occurs between certain intraspecific crossings in Drosophila represents a classical example of hybridization-induced TE activity (Kidwell 1985).Introgressive hybridization occurs widely between related natural plant populations, and is believed as playing important roles in genome evolution of many plant groups (Stebbins 1959; Arnold 1992; Wendel 2000; Rieseberg et al. 2003). In plant breeding, introgression of alien chromatin segments from wild species into crops is widely used and represents one of the most effective methods for creating new germplasm. Although the major and immediate effect of introgression is direct transfer of useful alleles from the donor species into the recipient one, several studies suggested that introgression may also impact the recipient genome by novel means. For example, it was found that introgression of uncharacterized foreign DNA segments into cultured animal cells may cause genome-wide perturbation of DNA methylation patterns and changes in gene expression (Remus et al. 1999). Another similar example showed that introgression of minute chromatin segments of Zizania latifolia into rice has caused extensive and wide-ranging genetic and epigenetic changes in the resultant recombinant inbred lines, or RILs (Liu et al. 1999; Wang et al. 2005), as well as transpositional activation of at least three TEs, a copia-like retrotranspon Tos17, a MITE mPing and a class II TE belonging to the hAT superfamily, called DartDart, in the resulting RILs (Liu and Wendel 2000; Shan et al. 2005; Wang et al. 2010).During characterization of several rice–Zizania RILs by the amplified fragment length polymorphism (AFLP) marker, two variant bands were found to be homologous to two transposition-competent LTR-retrotransposons based on sequence analysis against the whole genome of Nipponbare (). We report here that both elements were actually transpositionally activated in the studied RILs, although the new retrotransposon insertions did not associate with expression changes of the adjacent genes.
机译:包括转座子(II类TE)和逆转座子(I类TE)的转座因子(TEs)是所有研究的真核生物普遍存在的基因组组成部分,在植物中特别丰富。逆转录转座子通过“复制粘贴”机制经由RNA中间体转座(Bennetzen 2000)。结果,它们是相关植物物种之间基因组大小差异的主要原因。例如,约17–22%的水稻基因组被逆转座子占据,而在具有大型基因组的植物中,例如玉米(> 80%)和普通小麦(≈90%)中,这一比例甚至更高(McCarthy等等人,2002; Gao等人,2004; Kashkush等人,2007)。逆转座子可分为两大类,即LTR(长末端重复序列)和非LTR逆转座子(Bennetzen 2000)。根据内部结构域的顺序,LTR反转录转座子可进一步分为两个主要类别,即Ty1-copia样和Ty3-gypsy样(Bennetzen 2000)。安装证据表明TEs对基因组进化做出了重要贡献。结构和功能。在各种生物和非生物胁迫下,例如组织培养,病原体侵袭,创伤和寒冷胁迫下,TEs可以通过转座激活并产生插入突变并增强异位基因组重组(Wessler等人1995; Grandbastien 1998; Lisch 2007; Shapiro 2010)。 McClintock在1980年代曾设想,物种杂交是一种遗传压力,它可能导致亲本物种中的静态TEs重新活化并引起基因组重组(McClintock 1984)。的确,尽管有间接证据表明,至少在某些物种杂交中,以前隐性的亲本TEs可以被转录和/或转位重新激活(O'Neill等人,1998; Labrador等人,1999; Liu和Wendel,2000; Shan等人,2000)。 (2005; Ungerer等,2006)。此外,果蝇某些种内杂交之间发生的杂交发育不良现象是杂交诱导的TE活性的经典例子(Kidwell 1985),渗入杂交广泛发生在相关天然植物种群之间,并被认为在基因组中起着重要作用。植物群的进化(Stebbins 1959; Arnold 1992; Wendel 2000; Rieseberg等人2003)。在植物育种中,外来染色质片段从野生物种向作物中的渗入被广泛使用,并且代表了创建新种质的最有效方法之一。尽管基因渗入的主要和直接作用是将有用的等位基因从供体物种直接转移到受体中,但多项研究表明,基因渗入也可能通过新颖的方式影响受体基因组。例如,发现未表征的外源DNA片段渗入培养的动物细胞中可能引起全基因组DNA甲基化模式的扰动和基因表达的改变(Remus等人,1999)。另一个相似的例子表明,Z子的细小染色质片段渗入水稻已导致重组重组自交系(RILs)发生广泛而广泛的遗传和表观遗传变化(Liu等,1999; Wang等,2005)。以及至少三个TE的移位激活,在所得的RIL中属于hAT超家族的D类/ nDart类copia类逆转录Tos17,MITE mPing和II类TE(Liu和Wendel 2000; 2005; Wang et al。2010)。在通过扩增片段长度多态性(AFLP)标记表征几个水稻-Zizania RILs的过程中,根据针对该基因的序列分析,发现两个变异带与两个具有转座能力的LTR-逆转座子同源。 Nipponbare的全基因组()。我们在这里报告,虽然新的反转录转座子插入并不与相邻基因的表达变化相关联,但在所研究的RILs中这两个元件实际上都被转座激活。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号