...
首页> 外文期刊>Hereditas >Long‐culm mutations with dominant genes are induced by mPing transposon in rice
【24h】

Long‐culm mutations with dominant genes are induced by mPing transposon in rice

机译:水稻中的mPing转座子可诱导具有显性基因的长茎突变

获取原文
   

获取外文期刊封面封底 >>

       

摘要

A recent trend in rice breeding has been the development of semidwarf rice cultivars, which are suitable for high-density cultivation with intensive use of fertilizers (Khush 1999). These cultivars typically feature a short sturdy culm, multiple tillers and upright leaves, and their high productivity has been reported in numerous studies (Tomita 2009). However, over-reliance on semidwarf rice cultivars developed using the single semidwarf gene sd1 (Hedden 2003a, 2003b) is not without its own intrinsic limitations. The attendant risks are especially clear in view of rapidly growing pressure for food supply to support an ever expanding world population in the 21st century. As a solution to our food problem, it is necessary to devise a new strategy that allows dramatically enhanced crop yields. For this, we propose the development of ‘tall dwarf’ rice cultivars that are characterized by increased biomass with long culms and large grains based on the primary semidwarf cultivars. In wheat breeding, genetic information has been elucidated for producing the ideal ‘tall dwarf’ plant type (Gale and Law 1976); that is, information on the functions of individual genes that directly control biomass production and the phenotypic effects of genetic modifications of these genes. However, in the case of rice, genetic studies on the elongation of rice culms have remained scarce (Okuno and Kawai 1978a, 1978b).This study focuses on the above question, and seeks to analyze mutant genes involved in culm elongation in several transposon-induced long-culm mutants, and ultimately provide insights into the development of improved long-culm rice lines. Transposable elements (TEs) are mobile DNA sequences that can change their positions in the genome by inserting themselves into new sites. TEs are classified into two classes according to the mode of propagation: retrotransposons (class I elements) and DNA transposable elements (transposons in a narrow sense, class II elements). While the former transposes through an RNA intermediate by the action of reverse transcriptase, the latter transposes in a DNA form through a cut-and-paste mechanism. For a long time, TEs were dismissed as selfish DNA. Recently, however, TEs have been revealed as major players in genomic evolution, because they cause genome rearrangements and alter the structure and regulation of individual genes (Bennetzen et al. 2000; Biemont and Vieira 2006; Tomita et al. 2008; Tomita 2010).In rice, TEs account for at least 35% of the genome (International Rice Genome Sequencing Project 2005). The numerically predominant type of TE is the miniature inverted-repeat transposable element (MITE) (Bureau et al. 1996; Mao et al. 2000; Turcotte et al. 2001; Feng et al. 2002; Jiang et al. 2004). MITEs are reminiscences of non-autonomous DNA transposons that are distinguished from other TEs because of their small size (<600 bp) and presence of short terminal inverted repeats (TIRs). Miniature Ping (mPing) is the first active MITE discovered in the rice genome (Jiang et al. 2003; Kikuchi et al. 2003; Nakazaki et al. 2003). The MITE mPing was shown to be active in the japonica strain Gimbozu where it had accumulated more than 1000 copies (Monden et al. 2009) and several long-culm mutants have been obtained in the progeny. In this study, three long culm mutants induced by mPing were analyzed for their mutant genes, and dominant long culm genes were identified.
机译:水稻育种的最新趋势是半矮化水稻品种的发展,该品种适合于大量使用化肥的高密度栽培(Khush 1999)。这些品种通常具有短而结实的茎秆,多个分till和直立的叶片,许多研究已经报道了它们的高生产力(Tomita 2009)。但是,过度依赖使用单个半矮基因sd1开发的半矮水稻品种(Hedden 2003a,2003b)并非没有其固有的局限性。鉴于21世纪粮食供应不断增长以支持不断增长的世界人口的风险尤其明显。为了解决我们的粮食问题,有必要设计一种新的策略来显着提高农作物的产量。为此,我们建议开发“矮矮型”水稻品种,其特征是在主要半矮矮型品种的基础上增加长茎和大粒生物量。在小麦育种中,已经阐明了遗传信息以产生理想的“矮矮”植物类型(Gale and Law 1976)。也就是说,有关直接控制生物量生产的单个基因功能的信息以及这些基因的遗传修饰的表型效应。但是,就水稻而言,有关稻秆伸长的遗传研究仍然很少(Okuno and Kawai 1978a,1978b)。诱导长茎水稻突变体,并最终为改良长茎水稻品系的发展提供见识。转座因子(TEs)是可移动的DNA序列,可通过将自身插入新位点来改变其在基因组中的位置。根据传播方式,TEs可分为两类:逆转座子(I类元素)和DNA转座因子(狭义上的转座子,II类元素)。前者通过逆转录酶的作用通过RNA中间体进行转座,而后者通过剪切和粘贴机制以DNA形式进行转座。长期以来,TE被视为自私的DNA。然而,最近,人们发现TEs是基因组进化的主要参与者,因为它们引起基因组重排并改变单个基因的结构和调控(B​​ennetzen等,2000; Biemont和Vieira,2006; Tomita等,2008; Tomita,2010)。在水稻中,TEs至少占基因组的35%(International Rice Genome Sequencing Project 2005)。 TE的数字主要类型是微型反向重复转座因子(MITE)(Bureau等,1996; Mao等,2000; Turcotte等,2001; Feng等,2002; Jiang等,2004)。 MITE是非自治DNA转座子的回忆,由于其体积小(<600 bp)和短末端反向重复序列(TIR)而与其他TE区别开来。微型Ping(mPing)是在水稻基因组中发现的第一个活性MITE(Jiang等,2003; Kikuchi等,2003; Nakazaki等,2003)。已证明MITE mPing在粳稻Gimbozu菌株中具有活性,该菌株已积累了1000多个拷贝(Monden等,2009),并且在子代中获得了几种长茎突变体。在这项研究中,分析了由mPing诱导的三个长茎突变体的突变基因,并鉴定了优势长茎基因。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号