...
首页> 外文期刊>Hereditas >Growth, fecundity and competitive ability of transgenic Trifolium subterraneum subsp. subterraneum cv. Leura expressing a sunflower seed albumin gene
【24h】

Growth, fecundity and competitive ability of transgenic Trifolium subterraneum subsp. subterraneum cv. Leura expressing a sunflower seed albumin gene

机译:转基因三叶草地下亚种的生长,繁殖力和竞争能力。地下简历表达向日葵种子白蛋白基因的Leura

获取原文
           

摘要

Over the past decade, advances in molecular biology have made possible a wide range of transgenic plants that express agronomically beneficial traits. However, concerns associated with the risk of releasing transgenic plants into the environment have remained at the forefront of the debate surrounding GM technology. Although many risks associated with transgenic plant use in agricultural or pasture situations have been suggested (Hails 2000; Wolfenbarger and Phifer 2000), the probability of transgenic plants becoming “superweeds” (Gressel 1999) has received considerable attention. In part this is due to the considerable economic and environmental costs of invasive plants (Lonsdale 1994; Ramakrishnan and Vitousek 1989; Jones et al. 2000; Mack et al. 2000), but also owing to an increased appreciation of the economic value of intact natural systems (Bockstael et al. 2000; Bullock et al. 2001).Recently, a large number of pasture and turf plants have been genetically modified for agricultural purposes (Khan et al. 1996; Christiansen et al. 2000; Jayasena et al. 2001). Given the propensity for pasture plants to become weeds (Lonsdale 1994), investigation into the invasiveness or competitiveness of new transgenic plants intended for future release is a necessary component of any comprehensive risk assessment. Ideally, risk assessment of transgenic plants should include a combination of field and glasshouse trials performed under a variety of experimental conditions, including, if possible, those favouring the selection of the transgene itself (Kjellsson and Simonsen 1994). The nature of the specific experiments undertaken to quantify these risks will depend on the characteristics of both the transgene itself and the recipient plant (Dear et al. 1997), and in particular the ecological factors, such as competition, that currently limit the growth rate of populations of the target species (Schmitt and Linder 1994). Kjellsson and Simonsen (1994) recommend the use of competition trials for assessing whether transgenic and non-transgenic plants differ in competitive ability across a range of demographic stages of development.In this paper we report the results of a glasshouse trial aimed at determining whether transgenic Trifolium subterraneum L. subsp. subterraneum cv. Leura containing the high-sulphur sunflower seed albumin (ssa) gene (Khan et al. 1996) exhibits a competitive advantage over the non-transgenic commercial line in mixtures of different planting density. We also compared the morphology, fecundity and demographic characteristics of transgenic and non-transgenic subclover grown in mixtures and monocultures, quantifying differences in mortality, growth, mean and maximum above-ground plant weight, seed production and intrinsic rate of population increase across both genotypes. The transgenic subclover line used in the trial was developed to increase the rumen-protected sulphur content of forage consumed by sheep in improved pastures, since increased rumen stable sulphur intake enhances wool production (Khan et al. 1996). The ssa gene has been shown to alter the concentration of sulphur-compounds and associated biochemical pathways in a range of plants (Tabe and Droux 2002; Hagan et al. 2003), and since many important physiological processes are linked to inorganic and organic sulphur-containing compounds (e.g. ethylene production and methyl donation; Bright et al. 1980) it is possible that the ecological fitness of subterranean clover and other plants could be altered by ssa gene expression (Dear et al. 2003). The trial reported here comprises the first step in a phased process of assessing the ecologial risk posed by transgenic subterranean clover containing the ssa gene under controlled and field conditions. Subsequent studies will investigate the growth, fecundity and invasiveness of transgenic subclover containing this construct in a native grassland ecosystem considered prone to invasion by subclover and other exotic weeds.
机译:在过去的十年中,分子生物学的进步使表达农学有益性状的多种转基因植物成为可能。然而,与将转基因植物释放到环境中的风险相关的担忧仍然是围绕转基因技术的争论的前沿。尽管已经提出了在农业或牧场环境中使用转基因植物的许多风险(Hails,2000; Wolfenbarger和Phifer,2000),但转基因植物成为“超级杂草”的可能性(Gressel,1999)受到了相当大的关注。部分原因是由于外来入侵植物的经济和环境成本高昂(Lonsdale 1994; Ramakrishnan和Vitousek 1989; Jones等2000; Mack等2000),而且还因为对完好无损的经济价值的了解增加了(Bockstael et al.2000; Bullock et al.2001)。最近,为农业目的对大量牧场和草皮植物进行了基因改造(Khan et al.1996; Christiansen et al.2000; Jayasena et al。 2001)。鉴于牧草很容易成为杂草(Lonsdale 1994),对旨在未来释放的新转基因植物的入侵性或竞争力进行调查是任何全面风险评估的必要组成部分。理想情况下,对转基因植物的风险评估应包括在各种实验条件下进行的田间试验和温室试验的组合,包括在可能的情况下,有利于选择转基因本身的试验(Kjellsson and Simonsen 1994)。量化这些风险的具体实验的性质将取决于转基因本身和受体植物的特征(Dear等,1997),尤其是目前限制生长速度的生态因素,例如竞争。目标物种的数量(Schmitt和Linder 1994)。 Kjellsson和Simonsen(1994)建议使用竞争试验来评估转基因植物和非转基因植物在整个人口发展阶段的竞争能力是否不同。在本文中,我们报告了旨在确定是否转基因的温室试验的结果。白三叶地下亚种地下简历含有高硫向日葵种子白蛋白(ssa)基因的Leura(Khan et al。1996)在不同种植密度的混合物中比非转基因商业品系具有竞争优势。我们还比较了混合和单培养中转基因和非转基因亚科植物的形态,繁殖力和人口统计学特征,量化了两种基因型在死亡率,生长,地上植物最大和最大平均重量,种子产量以及种群内在增长率方面的差异。 。该试验中使用的转基因苜蓿系被开发出来,以提高改良牧场中绵羊食用的瘤胃中硫的瘤胃保护硫含量,因为瘤胃中稳定的硫摄入增加了羊毛的产量(Khan et al。1996)。已显示ssa基因可改变多种植物中硫化合物的浓度及相关的生化途径(Tabe和Droux 2002; Hagan等人2003),并且由于许多重要的生理过程与无机和有机硫有关。含有化合物的化合物(例如乙烯生产和甲基捐赠; Bright等人,1980),ssa基因表达可能会改变地下三叶草和其他植物的生态适应性(Dear等人,2003)。本文报道的试验包括分阶段过程中的第一步,该过程是在受控和田间条件下评估含有ssa基因的转基因地下三叶草构成的生态风险的第一步。随后的研究将调查含有这种构建体的转基因苜蓿在原生草地生态系统中的生长,繁殖力和侵袭性,该草地生态系统被认为容易受到苜蓿和其他外来杂草的入侵。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号