...
首页> 外文期刊>Hereditas >Genetic relationships among Aster species by multivariate analysis and AFLP markers
【24h】

Genetic relationships among Aster species by multivariate analysis and AFLP markers

机译:多元分析和AFLP标记在紫苑种之间的遗传关系

获取原文
   

获取外文期刊封面封底 >>

       

摘要

The genus Asters.l. (fam. Asteraceae; tribe Astereae) includes more than three hundred species, gynomonoecious, morphologically heterogeneous and geographically widespread, with centers of diversity in North America and Eurasia. The capitulum consists of a whorl of female flowers around a cluster of bisexual flowers but the advantage of this sexual system was only speculated (Bertin and Kerwin 1998). The taxonomic history of the genus is controversial due to the reliance on traditional taxonomic characters. Efforts to clarify phylogenetic relationships in Aster s.l. were based on morphological (Nesom 1994b), cytotaxonomic (Semple 1995) and molecular approaches using chloroplast DNA (cpDNA) and the internal transcribed spacers (ITS) of rDNA (Xiang and Semple 1996; Noyes and Rieseberg 1999). Unfortunately, there is disagreement of evolutionary relationships within Aster between ITS and cpDNA restriction site data. Chromosome number is extremely variable in Aster ranging from 2n=10 to 2n=112 and ploidy level reaches 2n=12x (Semple et al. 1983). The ancestral chromosomal base-number for the tribe Astereae is controversial. Molecular evidence by cpDNA analysis supported the theory of x=9 with a hypothesis of aneuploid reduction for lower base chromosome number (Semple 1995). The evolutionary significance of ploidy increase has also applied implications in Aster since achene weight, post-germination phenomena, seedling survival and vigour are associated with ploidy level (Chmielewski 1991). The wide geographical distribution of the Aster species in Old and New World indicates a range of adaptation to various habitats including harsh conditions. For instance, sea aster (A. tripolium) is a halophyte, tolerating 2–6% NaCl, which was used as source of aquaporin-homologue genes (Uno et al. 1998).A number of Aster species and their interspecific hybrids, both natural and artificial, are grown as ornamentals for cut-flowers, gardens, and, to a lesser extent, for pot plants. Moreover, extensive surveys have revealed an extremely rich chemical diversity in the family whose evolutionary success was suggested to be due to the highly diversified chemical defence system (Cronquist 1981; Jansen et al. 1991). The chemical diversity can help for assessing phylogenetic relationships although, the reliability of this approach is limited by parallel evolution of the same classes of secondary compounds throughout Asteraceae (Seaman 1982). Particularly in Aster, secondary metabolites, such as triterpenoid saponins, have been identified to inhibit tumoral cell development (Shao et al. 1997). Therefore, asters can also be an important source of pharmaceuticals. In this frame, a screening for callus culture and in vitro regeneration capacity was performed in Aster wild species (Cammareri et al. 2001a).At CNR Institute, a collection of Aster germplasm was established from European seed banks and private seed companies. The genetic diversity evidenced in this material, whilst interesting for breeding programmes aimed to Aster utilization as ornamental, provides useful chemical diversity for pharmaceutical purposes (Corea et al. Unpubl.). In this work, a sample of the germplasm collection was characterized for morphological traits of commercial interest, chromosome number and genetic diversity by AFLPs. The sampling took into account geographical origin of the species, morphological diversity and range of environmental adaptation.
机译:紫A属(星状菊科;星状菊科)包括三百多种,雌雄同体,形态异质,地理分布广泛,在北美和欧亚大陆具有多样性中心。头花是由一束雌花围绕一堆双性恋花组成的,但是这种性系统的优势只是被推测出来的(Bertin and Kerwin 1998)。由于对传统分类学特征的依赖,该属的分类学历史是有争议的。澄清Aster s.l.的系统发育关系的努力。分别基于形态学(Nesom 1994b),细胞分类学(Semple 1995)和使用叶绿体DNA(cpDNA)和rDNA内部转录间隔子(ITS)的分子方法(Xiang和Semple 1996; Noyes和Rieseberg 1999)。不幸的是,ITS和cpDNA限制性酶切位点数据之间在Aster内部没有进化关系。 Aster中的染色体数目变化很大,范围从2n = 10到2n = 112,倍性水平达到2n = 12x(Semple等,1983)。 Astereae部落的祖先染色体碱基数是有争议的。通过cpDNA分析获得的分子证据支持了x = 9的理论,并提出了以非整倍性还原为基础碱基数较低的假设(Semple 1995)。由于瘦果重,发芽后现象,幼苗存活和活力与倍性水平相关,因此倍性增加的进化意义也已在Aster中得到了应用(Chmielewski 1991)。旧世界和新世界中紫苑物种的广泛地理分布表明其适应各种生境的条件包括恶劣条件。例如,紫苑(A. tripolium)是一种盐生植物,能耐受2-6%的NaCl,被用作水通道蛋白同源基因的来源(Uno等人,1998年)。许多紫ster属植物及其种间杂种都天然和人造的,可作为切花,花园和较小范围的盆栽植物的观赏植物。而且,广泛的调查显示该家族中化学物质的多样性非常丰富,其进化成功被认为是由于高度多样化的化学防御系统所致(Cronquist 1981; Jansen等人1991)。化学多样性可以帮助评估系统发育关系,尽管这种方法的可靠性受到整个菊科中相同类别次要化合物平行进化的限制(Seaman 1982)。特别是在Aster中,已鉴定出次级代谢产物(如三萜皂苷)可抑制肿瘤细胞的发育(Shao等,1997)。因此,紫苑也可以是重要的药品来源。在此框架下,对紫苑野生物种的愈伤组织培养和体外再生能力进行了筛选(Cammareri等,2001a)。在CNR研究所,从欧洲种子库和私人种子公司建立了紫苑种质的集合。该材料中证明的遗传多样性,虽然对旨在将紫苑用作观赏植物的育种计划很有趣,但可为药学目的提供有用的化学多样性(Corea等,联合国出版)。在这项工作中,利用AFLPs对种质收集样品进行了商业兴趣,染色体数目和遗传多样性的形态特征表征。采样考虑了物种的地理起源,形态多样性和环境适应范围。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号