...
首页> 外文期刊>Hereditas >Marker assisted genetic analysis of non‐brittle rachis trait in barley
【24h】

Marker assisted genetic analysis of non‐brittle rachis trait in barley

机译:大麦非脆性Rachis性状的标记辅助遗传分析

获取原文
   

获取外文期刊封面封底 >>

       

摘要

INTRODUCTIONHead shattering is a weedy character that causes serious yield losses in barley. Weak rachis and brittle rachis are two mechanisms of head shattering. For both mechanisms, shattering is dominant. In weak rachis, one or two breaks occur in the spikes. A major QTL for weak rachis, Hst-3, was mapped on the short arm of Chromosome 3 using molecular markers (Kandemir et al. 2000). Brittle rachis, on the other hand, causes multiple segmentations on a spike. In extreme brittleness, spikelets disarticulate easily and only a few spikelets remain on the spike. The non-brittle rachis trait is controlled by multiple genes. Some loci for non-brittle rachis are located on the short arm of Chromosome 3, being close to the map position of weak rachis locus Hst-3. Because of its similarities in terms of allelic properties and map positions to weak rachis, non-brittle rachis is a difficult trait for genetic analysis.Non-brittle rachis is a well-studied trait. Takahashi (1955) reported that brittleness was controlled by two complementary genes, which are now designated btr1 and btr2 (Franckowiak and Konishi 1996a,b). Both loci are on Chromosome 3 and semi-allelic to each other, i.e. they are tightly linked. These two loci are sometimes called btr1btr2 complex. Since all barley varieties of cultivated species H. vulgare L. subsp.vulgare have one of the two btr genes in recessive form (Takahashi 1964), the non-brittle rachis trait is not found in cultivated barley varieties but is observed in the F1 of some intervarietal crosses in which alternating btr1 and btr2 alleles are involved. H. vulgare subsp. spontaneum carries dominant forms of both btr1 and btr2, and has brittle rachis. Takahashi (1955) reported that in F2 progeny of a H. vulgare subsp. spontaneum×H. vulgare subsp. vulgare cross only one of the linked btr genes segregated and a 3 brittle: 1 tough (non-brittle) ratio occurred. However, there have also been reports of 9 brittle:7 tough ratio (Johnson and Aberg 1943; Turcotte 1957) which indicate independent segregation. Segregation ratios that did not fit the two complementary gene models have also been reported (Smith 1951). All these reports might indicate that non-brittle rachis is a trait controlled by multiple genes interacting with each other to control the trait.Developing recombinant inbred lines (RILs) in the progeny of genotypes with alternating btr1btr2 alleles and using mostly AFLP markers, Komatsuda and Mano (2002) mapped btr1 in a 7.3 cM interval flanked by e14.m27.4.1 and e15m19.7 markers on the short arm of Chromosome 3 approximately 44.5 cM from telomere and 12.0 cM from centromere. The map position of btr1 was located about 9.6 cM proximal to RFLP marker ABG471. They failed to map btr2 using the same approach. They hypothesized that the reason for this failure was the intervention of an unlinked inhibitor gene, designated D, which prevented brittleness in dd condition. Data from a limited number of RILs showed that D locus is in an approximately 30 cM interval of e15m28.7.2-e15m19.6 on chromosome 1(7H) (Mano et al. 2001). Schieman (1921) also reported an inhibitor gene for non-brittle rachis. Thus, there is convincing evidence for the presence of loci other than btr1/btr2 involved in non-brittle rachis.Our ultimate goal is to reveal the interesting head shattering system in barley using one-step-at-a-time approach. We already explained the weak rachis mechanism and mapped the major loci responsible (Kandemir et al. 2000). Although map position of btr1 was reported by Komatsuda and Mano (2002) using AFLP markers, this data needed to be clarified using more robust RFLP markers which allow better comparisons among different barley maps. Specific objectives in the present study were; 1) to clarify the position of two tightly linked non-brittle rachis loci btr1btr2 complex on the short arm of Chromosome 3 using RFLP markers, and 2) to investigate the presence of additional genes involved in non-brittle rachis.
机译:引言头碎是一种杂草,会导致大麦的严重减产。弱的rachi和脆的rachi是头部破碎的两种机制。对于这两种机制,粉碎都是主要的。在弱轴上,尖峰发生一两次断裂。使用分子标记,在3号染色体的短臂上绘制了弱弱轴的主要QTL Hst-3(Kandemir等,2000)。另一方面,脆性脆饼会导致尖峰的多个分割。在极度脆性的情况下,小尖峰容易折断,并且只有几个小尖峰保留在尖峰上。非脆性Rachis性状由多个基因控制。非脆性轴的一些基因座位于第3号染色体的短臂上,靠近弱轴的基因座Hst-3的定位。由于在等位基因特性和弱弱轴上的定位等方面的相似性,非脆性Rachis是遗传分析中的一个困难特征。非脆性Rachis是一个经过充分研究的特征。 Takahashi(1955)报道脆性由两个互补基因控制,这两个互补基因现在称为btr1和btr2(Franckowiak and Konishi 1996a,b)。两个基因座都在第3号染色体上并且彼此半等位基因,即它们紧密相连。这两个基因座有时称为btr1btr2复合体。由于所有栽培大麦H.vulgare L.subsp.vulgare的大麦品种都具有两个隐性形式的btr基因之一(Takahashi 1964),因此在栽培大麦品种中未发现非脆性rachis性状,但在F1的F1中观察到了。一些品种间的杂交涉及交替的btr1和btr2等位基因。 H.vulgare子亚种自发性携带btr1和btr2的主要形式,并具有脆性轴。 Takahashi(1955)报告说,在H. vulgare亚种的F2后代中。自发水×H.粗俗亚种普通杂交仅分离了一个相关的btr基因,并且3脆性:1韧性(非脆性)比率发生。但是,也有报道说9脆性比7坚韧性比(Johnson和Aberg 1943; Turcotte 1957)表明了独立的隔离。还报道了不适合两个互补基因模型的分离率(Smith 1951)。所有这些报告可能都表明非脆性花生是由多个相互控制的基因控制的性状。在具有交替btr1btr2等位基因且主要使用AFLP标记,Komatsuda和Amp的基因型后代中开发重组近交系(RIL)。 Mano(2002)在7.3 cM间隔中定位btr1,其旁边是3号染色体短臂上的e14.m27.4.1和e15m19.7标记,端粒约44.5 cM,着丝粒约12.0 cM。 btr1的图谱位置位于RFLP标记ABG471的近9.6 cM处。他们无法使用相同的方法映射btr2。他们假设此失败的原因是未连接的抑制剂基因D的干预,该基因阻止了dd条件下的脆性。来自有限数量的RIL的数据显示D基因座在染色体1(7H)上e15m28.7.2-e15m19.6的大约30 cM区间中(Mano等,2001)。 Schieman(1921)也报告了非脆性轴的抑制剂基因。因此,有令人信服的证据表明非脆性rachi中存在除btr1 / btr2以外的基因座。我们的最终目标是使用一步一步的方法揭示大麦中有趣的头部破碎系统。我们已经解释了弱的rachis机制并绘制了负责的主要基因座(Kandemir et al。2000)。尽管Komatsuda和Mano(2002)使用AFLP标记报告了btr1的图谱位置,但仍需要使用更强大的RFLP标记来阐明此数据,以便更好地比较不同大麦图谱。本研究的具体目标是: 1)使用RFLP标记物阐明3号染色体短臂上两个紧密连接的非脆性轴突基因位点btr1btr2复合体的位置,以及2)研究涉及非脆性轴突的其他基因的存在。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号