...
首页> 外文期刊>Hereditas >Genetic structure of northwestern Spanish brown trout (Salmo trutta L.) populations, differences between microsatellite and allozyme loci
【24h】

Genetic structure of northwestern Spanish brown trout (Salmo trutta L.) populations, differences between microsatellite and allozyme loci

机译:西班牙西北鳟(Salmo trutta L.)种群的遗传结构,微卫星和同工酶基因座之间的差异

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Conservation of biological diversity in species of ecological and economical interest has been, for the last decades, one of the main challenges to overcome for many countries which have invested an extensive effort directed towards these species. This becomes critical both in brown trout (Salmo trutta L.) and other salmonid species which have lost large parts of their intraspecific variability due to environmental degradation, harvest and stocking.In order to halt and reverse this negative trend, different organizations have started supportive programs. However in most of them, the origin and genetic composition of both the added specimen and the natural populations have not been taken into account. Many studies based on the analysis of genetic markers have shown the risk of such practices on natural populations, causing the loss of intraspecific diversity, due to hybridization and/or introgression among autochthonous (individuals from a specific area that share some genic features) and allochthonous (foreign individuals) specimen (Hansen et al. 1993; Skaala et al. 1996; Blanco et al. 1998, García-Marín et al. 1998; Cagigas et al. 1999a; Poteaux et al. 1999). Managers must recognize the biological reality of existing genetic diversity and devise appropriate management strategies on the basis of conserving genetic variability effectively (Ryman 1991). Therefore, as a previous step to any release of fishes, managers should take into account the genetic status of the species in general and the populations that will be manipulated in particular.The existence of a hierarchical populational genetic structure in brown trout has been confirmed (Ryman 1983), although the number of levels within this hierarchy and interactions among different lineages or groups still remain unsolved to a great extent (García-Marín et al. 1999; Machordom et al. 2000; Sanz et al. 2000). The influence of glaciarism in the current patterns of gene diversity has been largely recognized in brown trout (Laikre et al. 1999). Also the existence of a high level of genetic diversity has been shown among the Spanish populations, exhibiting in many cases, a close link between the genetic differentiation and the hydrographical pattern. Thus, in the Iberian Peninsula, at least two clearly distinguished lineages can be identified: populations from the Mediterranean drainage (lineage IV) and those from the Cantabric drainage (lineage II) (García-Marín and Pla 1996; Cagigas et al. 1999b; García-Marín et al. 1999). More recent studies based on the analysis of mitochondrial DNA have confirmed this dichotomy reported previously by enzymatic loci (Machordom et al. 2000; Bernatchez 2001). This high differentiation at a macrogeographic level is also kept at a microgeographic level (Estoup et al. 1998; Sanz et al. 2000; Bouza et al. 2001; Cagigas et al. 2002), and it seems to be connected with the genetic drift and the scarce gene flow that is established among natural populations.During the past few decades the development of new and highly variable genetic markers, such as microsatellite DNA, has led to new research opportunities that were not possible using allozymes only. The higher level of microsatellite variability associated with its neutral character has turned them into the favourite technique for researchers when studying the genetic population structure of brown trout (Estoup et al. 1993; Cagigas et al. 1999b; Bernatchez 2001; Fritzner et al. 2001). Most of the surveys done with such markers have been focused on the evaluation of restocking on natural populations or the genetic characterization of brown trout populations at a macrogeographical level (Hansen et al. 2000; Fritzner et al. 2001; Ruzzante et al. 2001).In this work, we studied a microgeographic region in the Province of Leon, where two hydrographic basins are located: the Sil and Duero basins. Both basins are managed by the Servicio Territorial de Medio Ambiente y Ordenación del Territorio de León and, f
机译:在过去的几十年中,保护具有生态和经济意义的物种的生物多样性一直是许多对这些物种投入大量精力的国家所要克服的主要挑战之一。这对于褐鳟(Salmo trutta L.)和其他鲑鱼物种而言都是至关重要的,这些鲑鱼由于环境退化,收获和放养而丧失了大部分种内变异性,为了制止和逆转这种负面趋势,不同的组织已经开始提供支持程式。但是,在大多数情况下,都没有考虑添加标本和自然种群的起源和遗传组成。基于遗传标记分析的许多研究表明,这种做法在自然种群上存在风险,这是由于自体(来自具有特定遗传特征的特定区域的个体)与异源之间的杂交和/或渗入而造成种内多样性丧失的风险(外国人)标本(Hansen等,1993; Skaala等,1996; Blanco等,1998;García-Marín等,1998; Cagigas等,1999a; Poteaux等,1999)。管理者必须认识到现有遗传多样性的生物学现实,并在有效保护遗传变异性的基础上制定适当的管理策略(Ryman 1991)。因此,作为释放任何鱼类的前一步,管理人员应考虑该物种的总体遗传状况,尤其是将被操纵的种群的遗传状况。已确认褐鳟存在分级种群遗传结构( Ryman(1983),尽管在这个等级中的层级数目以及不同血统或群体之间的相互作用仍然在很大程度上尚未解决(García-Marín等,1999; Machordom等,2000; Sanz等,2000)。在褐鳟中,冰川作用对当前基因多样性模式的影响已得到广泛认可(Laikre等,1999)。在西班牙人口中也显示出高水平的遗传多样性,在许多情况下显示出遗传分化和水文模式之间的紧密联系。因此,在伊比利亚半岛,至少可以识别出两个明显不同的世系:来自地中海流域的人口(第四族)和来自坎塔布里亚克流域的人口(第二世)(García-Marín和Pla 1996; Cagigas等人1999b; 1999)。 García-Marín等(1999)。基于线粒体DNA分析的更近期研究证实了酶切位点先前报道的这种二分法(Machordom等2000; Bernatchez 2001)。在宏观地理层面上的这种高度分化也保持在微观地理层面上(Estoup等,1998; Sanz等,2000; Bouza等,2001; Cagigas等,2002),并且似乎与遗传漂移有关。在过去的几十年中,新的高度可变的遗传标记(例如微卫星DNA)的发展带来了新的研究机会,而仅使用同工酶是不可能的。较高水平的微卫星变异性及其中性特征使它们成为研究褐鳟鱼遗传种群结构时研究人员最喜欢的技术(Estoup等,1993; Cagigas等,1999b; Bernatchez,2001; Fritzner等,2001)。 )。使用此类标记进行的大多数调查都集中于评估自然种群的补给量或宏观地理水平上的鳟鱼种群的遗传特征(Hansen等,2000; Fritzner等,2001; Ruzzante等,2001)。在这项工作中,我们研究了莱昂省的微地理区域,该省有两个水文盆地:锡尔盆地和杜罗盆地。这两个流域都由塞维奇奥地区环境中心和莱昂地区的Ordenacióndel Territorio de管理,

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号