...
首页> 外文期刊>The Open Evolution Journal >Evolution of Boolean Networks: Contingency Versus Necessity in Biology
【24h】

Evolution of Boolean Networks: Contingency Versus Necessity in Biology

机译:布尔网络的演化:权变与生物学的必要性

获取原文
           

摘要

Many scientists are convinced that the Modern Synthesis – the current paradigm in evolutionary biology – needs to be expanded within the framework of an Extended Evolutionary Synthesis (EES). A major task for the EES is to provide an explanation for the origins and extant features of biological complexity. Here we address this issue, focusing our investigation on genetic network architectures, motifs, and dynamical behaviour, by developing an intuitive and essen-tially parameter-free evolutionary model of transcriptional regulation where the self-replicating digital organisms are Boo-lean networks, and where fitness is determined by their information-processing capacities. We validate our choice of fit-ness function by demonstrating that our evolved networks exhibit typical biological features of extant genetic regulatory networks: sparse connectivity, scale-free out-degree (within our range of measurement) and exponentially decaying in-degree distributions, significant clustering, a high proportion of feed-forward loop (FFL) network motifs, a prominence of canalising logic at the promoter, plasticity, and distributed robustness to mutation. In addition, the dynamics of our evolved networks feature simple attractor cycles that are robust to perturbations and exhibit self-organised criticality. In networks evolved without gene duplications, we show that the key architectural signatures noted above are absent. Sur-prisingly, the canalising fraction is much higher in comparison with networks evolved with gene duplications. These re-sults suggest network properties of extant gene networks require gene duplications in order to evolve, and that these prop-erties undergo positive selection, where they contribute to the global stability of the networks. By demonstrating that net-works evolved without gene duplications are robust and, like their scale-free counterparts, also exhibit self-organised criticality, this work highlights the interplay between contingent mechanism, such as gene duplications, and selection, in determining evolutionary outcomes.
机译:许多科学家认为,现代合成(当前进化生物学的范例)需要在扩展进化合成(EES)的框架内进行扩展。 EES的一项主要任务是对生物学复杂性的起源和现存特征进行解释。在这里,我们通过开发一种直观且基本无参数的转录调控进化模型(其中自我复制的数字有机体是Boo-lean网络)来解决这个问题,将我们的研究重点放在遗传网络的结构,主题和动力学行为上。适应性由其信息处理能力决定。我们通过证明我们的进化网络展现出现有遗传调控网络的典型生物学特征,来验证我们对健身功能的选择:稀疏的连通性,无标度的度数(在我们的测量范围内)和指数衰减的度数分布,显着性聚类,前馈环路(FFL)网络图案的比例很高,启动子处的canalising逻辑突出,可塑性以及对突变的鲁棒性。此外,我们演化网络的动力学特性具有简单的吸引子周期,该周期对扰动具有鲁棒性,并表现出自组织的临界度。在没有基因重复的进化网络中,我们证明了上面提到的关键体系结构特征不存在。出乎意料的是,与通过基因复制进化的网络相比,canalising比例要高得多。这些结果表明,现存基因网络的网络特性需要基因重复才能进化,而且这些特性会受到积极的选择,从而有助于网络的整体稳定性。通过证明没有基因重复的进化网络是强大的,并且像无标度的网络一样,也表现出自组织的临界性,这项工作强调了偶然机制(例如基因复制和选择)在确定进化结果中的相互作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号