首页> 外文期刊>Minerals >Focused Ion Beam and Advanced Electron Microscopy for Minerals: Insights and Outlook from Bismuth Sulphosalts
【24h】

Focused Ion Beam and Advanced Electron Microscopy for Minerals: Insights and Outlook from Bismuth Sulphosalts

机译:聚焦离子束和矿物质的高级电子显微镜:亚硫酸铋的见解和展望

获取原文
           

摘要

This paper comprises a review of the rapidly expanding application of nanoscale mineral characterization methodology to the study of ore deposits. Utilising bismuth sulphosalt minerals from a reaction front in a skarn assemblage as an example, we illustrate how a complex problem in ore petrology, can be approached at scales down to that of single atoms. We demonstrate the interpretive opportunities that can be realised by doing this for other minerals within their petrogenetic contexts. From an area defined as Au-rich within a sulphosalt-sulphide assemblage, and using samples prepared on a Focused Ion Beam?¢????Scanning Electron Microscopy (SEM) platform, we identify mineral species and trace the evolution of their intergrowths down to the atomic scale. Our approach progresses from a petrographic and trace element study of a larger polished block, to high-resolution Transmission Electron Microscopy (TEM) and High Angle Annular Dark Field (HAADF) Scanning-TEM (STEM) studies. Lattice-scale heterogeneity imaged in HAADF STEM mode is expressed by changes in composition of unit cell slabs followed by nanoparticle formation and their growth into ?¢????veins?¢????. We report a progressive transition from sulphosalt species which host lattice-bound Au (neyite, lillianite homologues; Pb-Bi-sulphosalts), to those that cannot accept Au (aikinite). This transition acts as a crystal structural barrier for Au. Fine particles of native gold track this progression over the scale of several hundred microns, leading to Au enrichment at the reaction front defined by an increase in the Cu gradient (several wt %), and abrupt changes in sulphosalt speciation from Pb-Bi-sulphosalts to aikinite. Atom-scale resolution imaging in HAADF STEM mode allows for the direct visualisation of the three component slabs in the neyite crystal structure, one of the largest and complex sulphosalts of boxwork-type. We show for the first time the presence of aikinite nanoparticles a few nanometres in size, occurring on distinct (111) PbS slabs in the neyite. This directly explains the non-stoichiometry of this phase, particularly with respect to Cu. Such non-stoichiometry is discussed elsewhere as defining distinct mineral species. The interplay between modular crystal structures and trace element behaviour, as discussed here for Au and Cu, has applications for other mineral systems. These include the incorporation and release of critical metals in sulphides, heavy elements (U, Pb, W) in iron oxides, the distribution of rare earth elements (REE), Y, and chalcophile elements (Mo, As) in calcic garnets, and the identification of nanometre-sized particles containing daughter products of radioactive decay in ores, concentrates, and tailings.
机译:本文对纳米级矿物表征方法在矿床研究中迅速扩展的应用进行了回顾。以矽卡岩组合中反应前沿的铋硫酸盐矿物为例,我们说明了如何以最小至单个原子的规模解决矿石岩石学中的一个复杂问题。我们展示了通过在其成岩环境中对其他矿物进行分析可以实现的解释性机会。从在硫盐-硫化物组合物中定义为富金的区域,并使用在聚焦离子束上制备的样品-扫描电子显微镜(SEM)平台,我们鉴定了矿物种类并向下追踪了它们的共生演化到原子尺度。我们的方法从对较大抛光块的岩石学和微量元素研究发展到高分辨率的透射电子显微镜(TEM)和大角度环形暗场(HAADF)扫描TEM(STEM)研究。在HAADF STEM模式下成像的晶格规模异质性是通过晶胞组成的变化,纳米颗粒的形成以及其生长为“静脉”的方式表达的。我们报告说,从承载晶格结合金(硫铝矿,纤锌矿同系物; Pb-Bi-硫代硫酸盐)的硫代盐物种到不能接受金(钙矾石)的逐步过渡。该过渡充当Au的晶体结构阻挡层。天然金的细颗粒在数百微米的范围内跟踪该进展,从而导致反应前沿的金富集,该富集由铜梯度(几个重量%)的增加以及由Pb-Bi-硫代硫酸钠形成的硫酸盐形态的突然变化定义到aikinite。 HAADF STEM模式下的原子级分辨率成像可直接显示烟灰石晶体结构中的三个成分平板,这是大型且复杂的方盒型硫磺盐之一。我们首次显示了在褐铁矿中独特的(111)PbS板上出现的几纳米大小的Aikinite纳米粒子的存在。这直接解释了该相的非化学计量,特别是对于Cu而言。这种非化学计量在别处讨论为定义不同的矿物种类。如此处针对Au和Cu所述,模块化晶体结构与痕量元素行为之间的相互作用在其他矿物系统中也有应用。其中包括在硫化物中掺入和释放关键金属,在氧化铁中掺入和释放重金属(U,Pb,W),在钙石榴石中分布稀土元素(REE),Y和亲硫族元素(Mo,As),以及鉴定含有矿石,精矿和尾矿中放射性衰变子产物的纳米级颗粒。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号