首页> 外文期刊>Minerals >Mineralogy of Zirconium in Iron-Oxides: A Micron- to Nanoscale Study of Hematite Ore from Peculiar Knob, South Australia
【24h】

Mineralogy of Zirconium in Iron-Oxides: A Micron- to Nanoscale Study of Hematite Ore from Peculiar Knob, South Australia

机译:氧化铁中锆的矿物学:来自南澳大利亚州奇特诺贝尔的赤铁矿的微米级至纳米级研究

获取原文
           

摘要

Zirconium is an element of considerable petrogenetic significance but is rarely found in hematite at concentrations higher than a few parts-per-million (ppm). Coarse-grained hematite ore from the metamorphosed Peculiar Knob iron deposit, South Australia, contains anomalous concentrations of Zr and has been investigated using microanalytical techniques that can bridge the micron- to nanoscales to understand the distribution of Zr in the ore. Hematite displays textures attributable to annealing under conditions of high-grade metamorphism, deformation twins (r~85° to hematite elongation), relict magnetite and fields of sub-micron-wide inclusions of baddeleyite as conjugate needles with orientation at ~110°/70°. Skeletal and granoblastic zircon, containing only a few ppm U, are both present interstitial to hematite. Using laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) spot analysis and mapping, the concentration of Zr in hematite is determined to be ~260 ppm on average (up to 680 ppm). The Zr content is, however, directly attributable to nm-scale inclusions of baddeleyite pervasively distributed throughout the hematite rather than Zr in solid solution. Distinction between nm-scale inclusions and lattice-bound trace element substitutions cannot be made from LA-ICP-MS data alone and requires nanoscale characterization. Scandium-rich (up to 0.18 wt. % Sc 2 O 3 ) cores in zircon are documented by microprobe analysis and mapping. Using high-angle annular dark field scanning transmission electron microscopy imaging (HAADF-STEM) and energy-dispersive spectrometry STEM mapping of foils prepared in-situ by focused ion beam methods, we identify [ 0 1 ˉ 1 ] baddeleyite epitaxially intergrown with [ 2 2 ˉ .1 ] hematite . Lattice vectors at 84–86° underpinning the epitaxial intergrowth orientation correspond to directions of r-twins but not to the orientation of the needles, which display a ~15° misfit. This is attributable to directions of trellis exsolutions in a precursor titanomagnetite. U–Pb dating of zircon gives a 206 Pb/ 238 U weighted mean age of 1741 ± 49 Ma (sensitive high-resolution ion microprobe U–Pb method). Based on the findings presented here, detrital titanomagnetite from erosion of mafic rocks is considered the most likely source for Zr, Ti, Cr and Sc. Whether such detrital horizons accumulated in a basin with chemical precipitation of Fe-minerals (banded iron formation) is debatable, but such Fe-rich sediments clearly included detrital horizons. Martitization during the diagenesis-supergene enrichment cycle was followed by high-grade metamorphism during the ~1.73–1.69 Ga Kimban Orogeny during which martite recrystallized as granoblastic hematite. Later interaction with hydrothermal fluids associated with ~1.6 Ga Hiltaba-granitoids led to W, Sn and Sb enrichment in the hematite. By reconstructing the evolution of the massive orebody at Peculiar Knob, we show how application of complimentary advanced microanalytical techniques, in-situ and on the same material but at different scales, provides critical constraints on ore-forming processes.
机译:锆是具有大量成岩意义的元素,但在赤铁矿中很少发现浓度高于百万分之几(ppm)的元素。来自南澳大利亚变质的奇特的旋钮铁矿床的粗粒赤铁矿矿石含有异常浓度的Zr,并且已使用微分析技术进行了研究,该技术可以将微米级连接到纳米级,以了解Zr在矿石中的分布。赤铁矿显示出可归因于高级变质条件下的退火,变形孪晶(r〜85°至赤铁矿伸长率),遗迹磁铁矿和坏死斑状亚微米级夹杂物场的共轭针形物,取向为〜110°/ 70 °。骨架和粒状锆石仅含有少量的ppm U,都存在于赤铁矿的间隙中。使用激光烧蚀电感耦合等离子体质谱(LA-ICP-MS)点分析和绘图,确定赤铁矿中Zr的平均浓度约为260 ppm(最高680 ppm)。然而,Zr含量直接归因于遍及赤铁矿的纳米级夹杂物,而不是固溶态的Zr。不能仅通过LA-ICP-MS数据来区分纳米级夹杂物和晶格结合的痕量元素,而需要进行纳米级表征。锆石中富含mapping(最多达0.18 wt。%Sc 2 O 3)的核通过微探针分析和作图记录。使用高角度环形暗场扫描透射电子显微镜成像(HAADF-STEM)和能量分散光谱对通过聚焦离子束法原位制备的箔的STEM映射,我们确定了[0 1ˉ1]外延与[2 [2ˉ.1]赤铁矿。在外延共生取向基础上位于84–86°的晶格矢量对应于r型双绞线的方向,但不对应于针的方向,后者显示〜15°失配。这可归因于前体钛磁铁矿中网格格的析出方向。锆石的U–Pb测年得到206 Pb / 238 U加权平均年龄为1741±49 Ma(灵敏的高分辨率离子微探针U–Pb方法)。根据此处提出的发现,镁铁矿岩石腐蚀产生的碎屑钛磁铁矿被认为是Zr,Ti,Cr和Sc的最可能来源。在铁矿物质化学沉淀(带状铁形成)的盆地中积累的这种碎屑层是否值得商,,但是这种富含铁的沉积物显然包括了碎屑层。在成岩作用-表生作用富集周期中的马氏体化之后,在〜1.73-1.69 Ga Kimban造山运动中发生了高级变质作用,在此期间马氏体重结晶为粒状赤铁矿。后来与约1.6 Ga Hiltaba-granitoids相关的热液相互作用,导致赤铁矿中W,Sn和Sb富集。通过重构Peculiar Knob块状矿体的演化,我们展示了如何在原位,在相同材料上,以不同规模使用互补的先进微分析技术,对成矿过程提供了关键性的约束。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号