首页> 外文期刊>Minerals >Environmental Risk of Metal Mining Contaminated River Bank Sediment at Redox-Transitional Zones
【24h】

Environmental Risk of Metal Mining Contaminated River Bank Sediment at Redox-Transitional Zones

机译:氧化还原过渡区金属矿山污染河岸沉积物的环境风险

获取原文
           

摘要

Diffuse metal pollution from mining impacted sediment is widely recognised as a potential source of contamination to river systems and may significantly hinder the achievement of European Union Water Framework Directive objectives. Redox-transitional zones that form along metal contaminated river banks as a result of flood and drought cycles could cause biogeochemical changes that alter the behaviour of polyvalent metals iron and manganese and anions such as sulphur. Trace metals are often partitioned with iron, manganese and sulphur minerals in mining-contaminated sediment, therefore the dissolution and precipitation of these minerals may influence the mobility of potentially toxic trace metals. Research indicates that freshly precipitated metal oxides and sulphides may be more “reactive” (more adsorbent and prone to dissolution when conditions change) than older crystalline forms. Fluctuations at the oxic-anoxic interface brought about through changes in the frequency and duration of flood and drought episodes may therefore influence the reactivity of secondary minerals that form in the sediment and the flux of dissolved trace metal release. UK climate change models predict longer dry periods for some regions, interspersed with higher magnitude flood events. If we are to fully comprehend the future environmental risk these climate change events pose to mining impacted river systems it is recommended that research efforts focus on identifying the primary controls on trace metal release at the oxic-anoxic interface for flood and drought cycles of different duration and frequency. This paper critically reviews the literature regarding biogeochemical processes that occur at different temporal scales during oxic, reducing and dry periods and focuses on how iron and sulphur based minerals may alter in form and reactivity and influence the mobility of trace metal contaminants. It is clear that changes in redox potential can alter the composition of secondary iron and sulphur minerals and influence the sorption of toxic trace metals and susceptibility to dissolution when further redox potential changes occur. However further work is needed to determine: (i) The extent to which different duration and frequency of wet and dry cycles influences the dissolution and precipitation of iron and sulphur minerals in mining contaminated river bank sediment; (ii) The temporal effects on mineral reactivity (sorption capacity and susceptibility to dissolution); (iii) The key biogeochemical processes that control the mobility of contaminant trace metals under these dynamic redox potential conditions.
机译:采矿影响的沉积物产生的扩散金属污染被公认为是河流系统的潜在污染源,并且可能严重阻碍实现欧盟水框架指令的目标。洪水和干旱循环导致沿金属污染的河岸形成的氧化还原过渡带可能引起生物地球化学变化,从而改变多价金属铁,锰和阴离子(如硫)的行为。痕量金属通常在受采矿污染的沉积物中与铁,锰和硫矿物分开,因此这些矿物的溶解和沉淀可能会影响潜在有毒痕量金属的迁移率。研究表明,新鲜沉淀的金属氧化物和硫化物可能比旧的晶体形式更具“反应性”(在条件变化时更具吸附性,并易于溶解)。通过改变洪水和干旱发作的频率和持续时间而引起的氧-氧界面的波动可能会影响沉积物中形成的次生矿物的反应性以及溶解的痕量金属释放的通量。英国的气候变化模型预测,某些地区的干旱时间更长,而散布的洪水事件更大。如果我们要完全理解这些气候变化事件对采矿业造成影响的河流系统带来的未来环境风险,建议研究工作重点是确定不同持续时间的洪水和干旱周期在氧-氧界面处痕量金属释放的主要控制措施。和频率。本文对含氧,还原和干燥期间在不同时间尺度发生的生物地球化学过程进行了严格的评论,并着重研究了铁和硫基矿物如何改变形式和反应性并影响痕量金属污染物的迁移率。很明显,氧化还原电势的变化会改变次级铁和硫矿物质的成分,并在发生进一步的氧化还原电势变化时影响有毒微量金属的吸附和溶解的敏感性。但是,还需要进一步的工作来确定:(i)潮湿和干燥周期的不同持续时间和频率在多大程度上影响铁和硫矿物在受污染的河岸沉积物中的溶解和沉淀; ii对矿物反应性的时间影响(吸附能力和溶解敏感性); (iii)在这些动态氧化还原电势条件下控制痕量污染物金属迁移率的关键生物地球化学过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号