首页> 外文期刊>Minerals >A Density Functional Theory Study of the Adsorption of Benzene on Hematite (α-Fe2O3) Surfaces
【24h】

A Density Functional Theory Study of the Adsorption of Benzene on Hematite (α-Fe2O3) Surfaces

机译:赤铁矿(α-Fe 2 O 3 )表面吸附苯的密度泛函理论研究

获取原文
           

摘要

The reactivity of mineral surfaces in the fundamental processes of adsorption, dissolution or growth, and electron transfer is directly tied to their atomic structure. However, unraveling the relationship between the atomic surface structure and other physical and chemical properties of complex metal oxides is challenging due to the mixed ionic and covalent bonding that can occur in these minerals. Nonetheless, with the rapid increase in computer processing speed and memory, computer simulations using different theoretical techniques can now probe the nature of matter at both the atomic and sub-atomic levels and are rapidly becoming an effective and quantitatively accurate method for successfully predicting structures, properties and processes occurring at mineral surfaces. In this study, we have used Density Functional Theory calculations to study the adsorption of benzene on hematite (α-Fe2O3) surfaces. The strong electron correlation effects of the Fe 3d-electrons in α-Fe2O3 were described by a Hubbard-type on-site Coulomb repulsion (the DFT+U approach), which was found to provide an accurate description of the electronic and magnetic properties of hematite. For the adsorption of benzene on the hematite surfaces, we show that the adsorption geometries parallel to the surface are energetically more stable than the vertical ones. The benzene molecule interacts with the hematite surfaces through π-bonding in the parallel adsorption geometries and through weak hydrogen bonds in the vertical geometries. Van der Waals interactions are found to play a significant role in stabilizing the absorbed benzene molecule. Analyses of the electronic structures reveal that upon benzene adsorption, the conduction band edge of the surface atoms is shifted towards the valence bands, thereby considerably reducing the band gap and the magnetic moments of the surface Fe atoms.
机译:矿物表面在吸附,溶解或生长以及电子转移等基本过程中的反应性直接与其原子结构有关。然而,由于这些矿物中可能发生混合的离子键和共价键,因此要弄清复杂的金属氧化物的原子表面结构与其他物理和化学性质之间的关系是具有挑战性的。但是,随着计算机处理速度和内存的快速增加,使用不同理论技术的计算机模拟现在可以在原子和亚原子水平上探查物质的性质,并且正迅速成为成功且定量准确地成功预测结构的方法,矿物表面发生的性质和过程。在这项研究中,我们使用密度泛函理论计算来研究苯在赤铁矿(α-Fe 2 O 3 )表面上的吸附。用Hubbard型现场库仑排斥法(DFT + U方法)描述了Fe-d 2 O 3 中Fe 3d电子的强电子相关效应。 ),发现它可以准确描述赤铁矿的电子和磁性。对于苯在赤铁矿表面的吸附,我们表明平行于该表面的吸附几何形状在能量上比垂直吸附几何形状更稳定。苯分子通过平行吸附几何结构中的π键和垂直几何结构中的弱氢键与赤铁矿表面相互作用。发现范德华相互作用在稳定吸收的苯分子中起重要作用。对电子结构的分析表明,在苯吸附后,表面原子的导带边缘向价带移动,从而显着减小了表面Fe原子的带隙和磁矩。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号