...
首页> 外文期刊>Graphene >Modeling Enhanced Adsorption of Explosive Molecules on a Hydroxylated Graphene Pore
【24h】

Modeling Enhanced Adsorption of Explosive Molecules on a Hydroxylated Graphene Pore

机译:模拟羟基化石墨烯孔隙中爆炸分子的增强吸附

获取原文
           

摘要

The possibility of a graphene bilayer nanosensor for the detection of explosive molecules was modeled using computational chemistry. A pore was designed on a graphene bilayer structure with three strategically placed perimeter hydroxyl (OH) groups built around the edge of an indented, two-dimensional hexagonal pore. This hydroxylated pore and models of various explosive molecules were optimized using MM2 molecular mechanics parameters. Values were calculated for the molecule-surface interaction energy (binding energy), E, for 22 explosive molecules on a flat graphene bilayer and on the specially designed hydroxylated pore within the bilayer. The molecule-surface binding energy for trinitrotoluene (TNT) increased from 17.9 kcal/mol on the flat graphene bilayer to 42.3 kcal/mol on the hydroxylated pore. Due to the common functionality of nitro groups that exist on many explosive molecules, the other explosive molecules studied gave similar enhancements based on the specific hydrogen bonding interactions formed within the pore. Each of the 22 explosive adsorbate molecules showed increased molecule-surface interaction on the bilayer hydroxylated pore as compared to the flat bilayer. For the 22 molecules, the average E for the flat graphite surface was 15.8 kcal/mol and for the hydroxylated pore E was 33.8 kcal/mol. An enhancement of adsorption should make a detection device more sensitive. Nanosensors based on a modified graphene surface may be useful for detecting extremely low concentrations of explosive molecules or explosive signature molecules.
机译:使用计算化学方法对石墨烯双层纳米传感器检测爆炸性分子的可能性进行了建模。在石墨烯双层结构上设计了一个孔,该孔具有在凹入的二维六边形孔的边缘周围建立的三个策略性放置的周边羟基(OH)。使用MM2分子力学参数优化了这种羟基化孔和各种爆炸性分子的模型。计算了平面石墨烯双层和双层中专门设计的羟基化孔上的22种爆炸性分子的分子-表面相互作用能(结合能)E的值。三硝基甲苯(TNT)的分子表面结合能从平面石墨烯双层上的17.9 kcal / mol增加到羟基化孔上的42.3 kcal / mol。由于存在于许多爆炸性分子上的硝基具有相同的官能度,因此研究的其他爆炸性分子基于在孔内形成的特定氢键相互作用而给出了类似的增强作用。与平坦双层相比,22种爆炸性吸附物分子中的每一个在双层羟基化孔上均显示出增加的分子表面相互作用。对于22个分子,平坦石墨表面的平均E为15.8kcal / mol,而羟基化孔的E为33.8kcal / mol。吸附的增强应使检测装置更加灵敏。基于改性石墨烯表面的纳米传感器可用于检测极低浓度的爆炸性分子或爆炸性特征分子。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号