...
首页> 外文期刊>AIP Advances >Inelastic electron and Raman scattering from the collective excitations in quantum wires: Zero magnetic field
【24h】

Inelastic electron and Raman scattering from the collective excitations in quantum wires: Zero magnetic field

机译:来自量子线中集体激发的非弹性电子和拉曼散射:零磁场

获取原文
           

摘要

The nanofabrication technology has taught us that an m-dimensional confining potential imposed upon an n-dimensional electron gas paves the way to a quasi-(n-m)-dimensional electron gas, with m ? n and 1 ? n, m ? 3. This is the road to the (semiconducting) quasi-n dimensional electron gas systems we have been happily traversing on now for almost two decades. Achieving quasi-one dimensional electron gas (Q-1DEG) [or quantum wire(s) for more practical purposes] led us to some mixed moments in this journey: while the reduced phase space for the scattering led us believe in the route to the faster electron devices, the proximity to the 1D systems left us in the dilemma of describing it as a Fermi liquid or as a Luttinger liquid. No one had ever suspected the potential of the former, but it took quite a while for some to convince the others on the latter. A realistic Q-1DEG system at the low temperatures is best describable as a Fermi liquid rather than as a Luttinger liquid. In the language of condensed matter physics, a critical scrutiny of Q-1DEG systems has provided us with a host of exotic (electronic, optical, and transport) phenomena unseen in their higher- or lower-dimensional counterparts. This has motivated us to undertake a systematic investigation of the inelastic electron scattering (IES) and the inelastic light scattering (ILS) from the elementary electronic excitations in quantum wires. We begin with the Kubo's correlation functions to derive the generalized dielectric function, the inverse dielectric function, and the Dyson equation for the dynamic screened potential in the framework of Bohm-Pines’ random-phase approximation. These fundamental tools then lead us to develop methodically the theory of IES and ILS for the Q-1DEG systems. As an application of the general formal results, which know no bounds regarding the subband occupancy, we compute the density of states, the Fermi energy, the full excitation spectrum [comprised of intrasubband and intersubband single-particle as well as collective excitations], the loss functions for the IES and the Raman intensity for the ILS. We observe that it is the collective (plasmon) excitations that largely contribute to the predominant peaks in the energy-loss and the Raman spectra. The inductive reasoning is that the IES can be a potential alternative of the overused ILS for investigating collective excitations in quantum wires. We trust that this research work shall be useful to all – from novice to expert and from theorist to experimentalist – who believe in the power of traditional science.
机译:纳米制造技术告诉我们,施加在n维电子气上的m维约束电势为准(nmm)维电子气铺平了道路。 n和1? n,m 3.这是通往(半导体)准n维电子气系统的道路,我们已经愉快地穿越了近二十年。达到准一维电子气(Q-1DEG)[或用于更多实际目的的量子线]导致我们在此过程中遇到了一些混合时刻:而散射的相空间减小使我们相信通向量子阱的途径。更快的电子设备,与一维系统的接近使我们陷入将其描述为费米液体或Luttinger液体的难题。没有人曾经怀疑过前者的潜力,但是有些人花了很长时间才说服其他人相信后者。最好将低温下的现实Q-1DEG系统描述为费米液体而不是Luttinger液体。用凝聚态物理学的语言,对Q-1DEG系统的严格审查为我们提供了许多奇异的(电子,光学和传输)现象,这些现象在其高维或低维对应物中是看不见的。这促使我们对量子线中基本电子激发的非弹性电子散射(IES)和非弹性光散射(ILS)进行系统的研究。我们从Kubo的相关函数开始,以在Bohm-Pines随机相位近似的框架中得出广义电介质函数,逆电介质函数和动态屏蔽电势的Dyson方程。这些基本工具使我们有条不紊地为Q-1DEG系统开发了IES和ILS理论。作为一般形式结果的应用,该形式结果对子带的占用没有限制,我们计算了状态密度,费米能量,完整的激发光谱[包括子带内和子带间单粒子以及集体激发], IES的损耗函数和ILS的拉曼强度。我们观察到,集体(等离子体激元)激发对能量损失和拉曼光谱中的主要峰有很大贡献。归纳推理是,IES可能是过度使用的ILS的潜在替代物,用于研究量子线中的集体激发。我们相信,这项研究工作对相信传统科学力量的所有人(从新手到专家,从理论家到实验家)都是有用的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号