...
首页> 外文期刊>Cell death & disease. >Redox homeostasis: the linchpin in stem cell self-renewal and differentiation
【24h】

Redox homeostasis: the linchpin in stem cell self-renewal and differentiation

机译:氧化还原稳态:干细胞自我更新和分化的关键

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Stem cells are characterized by their unique ability of self-renewal to maintain the so-called stem cell pool. Over the past decades, reactive oxygen species (ROS) have been recognized as toxic aerobic metabolism byproducts that are harmful to stem cells, leading to DNA damage, senescence or cell death. Recently, a growing body of literature has shown that stem cells reside in redox niches with low ROS levels. The balance of Redox homeostasis facilitates stem cell self-renewal by an intricate network. Thus, to fully decipher the underlying molecular mechanisms involved in the maintenance of stem cell self-renewal, it is critical to address the important role of redox homeostasis in the regulation of self-renewal and differentiation of stem cells. In this regard, we will discuss the regulatory mechanisms involved in the subtly orchestrated balance of redox status in stem cells by scavenger antioxidant enzyme systems that are well monitored by the hypoxia niches and crucial redox regulators including forkhead homeobox type O family (FoxOs), apurinic/apyrimidinic (AP) endonuclease1/redox factor-1 (APE1/Ref-1), nuclear factor erythroid-2-related factor 2 (Nrf2) and ataxia telangiectasia mutated (ATM). We will also introduce several pivotal ROS-sensitive molecules, such as hypoxia-inducible factors, p38 mitogen-activated protein kinase (p38) and p53, involved in the redox-regulated stem cell self-renewal. Specifically, all the aforementioned molecules can act as ‘redox sensors’ by virtue of redox modifications of their cysteine residues, which are critically important in the control of protein function. Given the importance of redox homeostasis in the regulation of stem cell self-renewal, understanding the underlying molecular mechanisms involved will provide important new insights into stem cell biology.
机译:干细胞的特点是具有独特的自我更新能力,可以维持所谓的干细胞库。在过去的几十年中,活性氧(ROS)被认为是有毒的需氧代谢副产物,对干细胞有害,导致DNA损伤,衰老或细胞死亡。最近,越来越多的文献表明干细胞位于具有低ROS水平的氧化还原位。氧化还原稳态的平衡通过复杂的网络促进干细胞的自我更新。因此,要充分理解维持干细胞自我更新所涉及的潜在分子机制,解决氧化还原稳态在调节干细胞自我更新和分化中的重要作用至关重要。在这方面,我们将讨论通过清除剂抗氧化剂酶系统巧妙地协调干细胞中氧化还原状态平衡的调节机制,该系统由缺氧壁and和关键的氧化还原调节剂(包括叉头同源异型盒O型家族(FoxOs),嘌呤类)进行了良好监测/ apyrimidinic(AP)核酸内切酶1 /氧化还原因子-1(APE1 / Ref-1),核因子红系-2相关因子2(Nrf2)和共济失调性毛细血管扩张症(ATM)。我们还将介绍几种关键的ROS敏感分子,例如缺氧诱导因子,p38促分裂原活化蛋白激酶(p38)和p53,它们参与了氧化还原调节的干细胞自我更新。具体而言,上述所有分子都可以通过其半胱氨酸残基的氧化还原修饰来充当“氧化还原传感器”,这在控制蛋白质功能中至关重要。鉴于氧化还原稳态在干细胞自我更新的调节中的重要性,了解相关的潜在分子机制将为干细胞生物学提供重要的新见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号