...
首页> 外文期刊>Biointerphases >Model Membrane Platforms for Biomedicine: Case Study on Antiviral Drug Development
【24h】

Model Membrane Platforms for Biomedicine: Case Study on Antiviral Drug Development

机译:生物医学的模型膜平台:抗病毒药物开发的案例研究

获取原文
           

摘要

As one of the most important interfaces in cellular systems, biological membranes have essential functions in many activities such as cellular protection and signaling. Beyond their direct functions, they also serve as scaffolds to support the association of proteins involved in structural support, adhesion, and transport. Unfortunately, biological processes sometimes malfunction and require therapeutic intervention. For those processes which occur within or upon membranes, it is oftentimes difficult to study the mechanism in a biologically relevant, membranous environment. Therefore, the identification of direct therapeutic targets is challenging. In order to overcome this barrier, engineering strategies offer a new approach to interrogate biological activities at membrane interfaces by analyzing them through the principles of the interfacial sciences. Since membranes are complex biological interfaces, the development of simplified model systems which mimic important properties of membranes can enable fundamental characterization of interaction parameters for such processes. We have selected the hepatitis C virus (HCV) as a model viral pathogen to demonstrate how model membrane platforms can aid antiviral drug discovery and development. Responsible for generating the genomic diversity that makes treating HCV infection so difficult, viral replication represents an ideal step in the virus life cycle for therapeutic intervention. To target HCV genome replication, the interaction of viral proteins with model membrane platforms has served as a useful strategy for target identification and characterization. In this review article, we demonstrate how engineering approaches have led to the discovery of a new functional activity encoded within the HCV nonstructural 5A protein. Specifically, its N-terminal amphipathic, α-helix (AH) can rupture lipid vesicles in a size-dependent manner. While this activity has a number of exciting biotechnology and biomedical applications, arguably the most promising one is in antiviral medicine. Based on the similarities between lipid vesicles and the lipid envelopes of virus particles, experimental findings from model membrane platforms led to the prediction that a range of medically important viruses might be susceptible to rupturing treatment with synthetic AH peptide. This hypothesis was tested and validated by molecular virology studies. Broad-spectrum antiviral activity of the AH peptide has been identified against HCV, HIV, herpes simplex virus, and dengue virus, and many more deadly pathogens. As a result, the AH peptide is the first in class of broad-spectrum, lipid envelope-rupturing antiviral agents, and has entered the drug pipeline. In summary, engineering strategies break down complex biological systems into simplified biomimetic models that recapitulate the most important parameters. This approach is particularly advantageous for membrane-associated biological processes because model membrane platforms provide more direct characterization of target interactions than is possible with other methods. Consequently, model membrane platforms hold great promise for solving important biomedical problems and speeding up the translation of biological knowledge into clinical applications.
机译:作为细胞系统中最重要的接口之一,生物膜在许多活动(例如细胞保护和信号传导)中都具有必不可少的功能。除了其直接功能外,它们还充当支架以支持参与结构支持,粘附和运输的蛋白质的缔合。不幸的是,生物学过程有时会失灵,需要治疗干预。对于在膜内或膜上发生的那些过程,通常难以在生物学相关的膜环境中研究其机理。因此,直接治疗靶标的鉴定具有挑战性。为了克服这一障碍,工程学策略提供了一种新方法,可通过界面科学原理分析膜界面上的生物活性。由于膜是复杂的生物界面,因此模仿膜重要特性的简化模型系统的开发可以实现此类过程相互作用参数的基本表征。我们选择了丙型肝炎病毒(HCV)作为模型病毒病原体,以证明模型膜平台如何帮助抗病毒药物的发现和开发。病毒复制负责产生使HCV感染的治疗如此困难的基因组多样性,代表了病毒生命周期中用于治疗干预的理想步骤。为了靶向HCV基因组复制,病毒蛋白与模型膜平台的相互作用已成为靶标鉴定和表征的有用策略。在这篇综述文章中,我们证明了工程方法是如何导致发现HCV非结构性5A蛋白内编码的新功能活性的。具体而言,其N末端两亲性α-螺旋(AH)可以以尺寸依赖性方式破裂脂质囊泡。尽管这项活动具有许多令人兴奋的生物技术和生物医学应用,但可以说最有前途的是抗病毒药物。基于脂质小泡和病毒颗粒的脂质包膜之间的相似性,模型膜平台的实验结果导致了以下预测:一系列医学上重要的病毒可能容易受到合成AH肽的破裂治疗。通过分子病毒学研究测试并验证了该假设。 AH肽的广谱抗病毒活性已针对HCV,HIV,单纯疱疹病毒和登革热病毒以及更多致命病原体进行了鉴定。结果,AH肽是一类广谱的,能破坏脂质包膜的抗病毒药物,并且已进入药物生产线。总之,工程策略将复杂的生物系统分解为简化的仿生模型,以概括最重要的参数。这种方法对膜相关的生物过程特别有利,因为与其他方法相比,模型膜平台可以更直接地表征靶标相互作用。因此,模型膜平台有望解决重要的生物医学问题并加快将生物学知识转化为临床应用的前景。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号