...
首页> 外文期刊>Computers, Materials & Continua >Multi-Scale Modelling and Simulation of Textile Reinforced Materials
【24h】

Multi-Scale Modelling and Simulation of Textile Reinforced Materials

机译:纺织增强材料的多尺度建模与仿真

获取原文
获取原文并翻译 | 示例
           

摘要

Novel textile reinforced composites provide an extremely high adaptability and allow for the development of materials whose features can be adjusted precisely to certain applications. A successful structural and material design process requires an integrated simulation of the material behavior, the estimation of the effective properties which need to be assigned to the macroscopic model and the resulting features of the component. In this context two efficient modelling strategies - the Binary Model (Carter, Cox, and Fleck (1994)) and the Extended Finite Element Method (X-FEM) (Moes, Cloirec, Cartraud, and Remade (2003)) - are used to model materials which exhibit a complex structure on the meso-scale. For these investigations the focus is set on composites made of glass fibers, thermoset or thermoplastic matrices and on the application of commingled thermoplastic and glass fibers. Homogenization techniques are applied to compute effective macroscopic stiffness parameters. Problems arising from a complex textile reinforcement architecture, e.g. bi- or multi-axial weft-knit, woven and braided fabrics, in combination with a high fiber volume fraction will be addressed and appropriate solutions are proposed. The obtained results are verified by experimental test data. The macroscopic stress and strain fields in a component are used for optimization of the construction and the material layout. These distributions are computed in a global structural finite element analysis. Based on the global fiber orientation the required macroscopic material properties obtained from homogenization on the meso-scale are mapped to the model of the structural part. The configuration of the fiber-orientation and textile shear deformation in complex structural components caused by the manufacturing process is determined by a three-dimensional optical measurement system.
机译:新型纺织品增强复合材料具有极高的适应性,并允许开发其特性可以针对特定应用精确调整的材料。一个成功的结构和材料设计过程需要对材料性能进行综合仿真,对有效特性进行估算,而有效特性则需要分配给宏观模型以及零件的​​最终特征。在这种情况下,使用了两种有效的建模策略-二进制模型(Carter,Cox和Fleck(1994))和扩展有限元方法(X-FEM)(Moes,Cloirec,Cartraud和Remade(2003年))。在中尺度上显示复杂结构的模型材料。对于这些研究,重点是玻璃纤维,热固性或热塑性基质制成的复合材料,以及热塑性和玻璃纤维混合的应用。均质技术被应用于计算有效的宏观刚度参数。复杂的纺织品增强结构引起的问题将解决与高纤维体积分数结合的双轴或多轴纬编,机织和编织织物,并提出适当的解决方案。获得的结果通过实验测试数据验证。组件中的宏观应力场和应变场用于优化结构和材料布局。这些分布是在整体结构有限元分析中计算的。基于总体纤维取向,将从中观尺度上的均质化获得的所需宏观材料特性映射到结构部件的模型。由制造过程引起的复杂结构部件中纤维取向和纺织品剪切变形的构型由三维光学测量系统确定。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号