...
首页> 外文期刊>Computers, Materials & Continua >Development of 3D Trefftz Voronoi Cells with Ellipsoidal Voids &/or Elastic/Rigid Inclusions for Micromechanical Modeling of Heterogeneous Materials
【24h】

Development of 3D Trefftz Voronoi Cells with Ellipsoidal Voids &/or Elastic/Rigid Inclusions for Micromechanical Modeling of Heterogeneous Materials

机译:具有椭圆形空隙和/或弹性/刚性包裹体的3D Trefftz Voronoi细胞的开发,用于异质材料的微机械建模

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

In this paper, as an extension to the authors's work in [Dong and Atluri (2011a,b, 2012a,b,c)], three-dimensional Trefftz Voronoi Cells (TVCs) with ellipsoidal voids/inclusions are developed for micromechanical modeling of heterogeneous materials. Several types of TVCs are developed, depending on the types of heterogeneity in each Voronoi Cell(VC). Each TVC can include alternatively an ellipsoidal void, an ellipsoidal elastic inclusion, or an ellipsoidal rigid inclusion. In all of these cases, an inter-VC compatible displacement field is assumed at each surface of the polyhedral VC, with Barycentric coordinates as nodal shape functions. The Trefftz trial displacement fields in each VC are expressed in terms of the Papkovich-Neuber solution. Ellipsoidal harmonics are used as the Papkovich-Neuber potentials to derive the Trefftz trial displacement fields. Characteristic lengths are used for each VC to scale the Trefftz trial functions, in order to avoid solving systems of ill-conditioned equations. Two approaches for developing VC stiffness matrices are used. The differences between these two approaches are that, the compatibility between the independently assumed fields in the interior of the VC with those at the outer- as well as the inner-boundary, are enforced alternatively, by Lagrange multipliers in multi-field boundary variational principles, or by collocation at a finite number of preselected points. These VCs are named as TVC-BVP and TVC-C respectively. Several three-dimensional computational micromechan-ics problems are solved using these TVCs. Computational results demonstrate that both TVC-BVP and TVC-C can efficiently predict the overall properties of composite/porous materials. They can also accurately capture the stress concentration around ellipsoidal voids/inclusions, which can be used in future to study the damage of materials, in combination of tools of modeling micro-crack initiation and propagation. Therefore, we consider that the 3D TVCs developed in this study are very suitable for ground-breaking micromechanical study of heterogeneous materials.
机译:在本文中,作为[Dong and Atluri(2011a,b,2012a,b,c)]中作者工作的扩展,开发了具有椭圆形空隙/夹杂物的三维Trefftz Voronoi细胞(TVC),用于异质结构的微机械建模。材料。根据每个Voronoi Cell(VC)中异质性的类型,开发了几种类型的TVC。每个TVC可替代地包括椭圆形空隙,椭圆形弹性夹杂物或椭圆形刚性夹杂物。在所有这些情况下,在多面体VC的每个表面上都假定了VC间兼容的位移场,重心坐标作为节点形状函数。每个VC中的Trefftz试验位移场用Papkovich-Neuber解表示。椭圆谐波用作Papkovich-Neuber势来推导Trefftz试验位移场。每个VC使用特征长度来缩放Trefftz试用函数,以避免求解病态方程组。使用了两种开发VC刚度矩阵的方法。这两种方法之间的差异在于,VC内部的独立假定字段与外部边界以及内部边界字段之间的兼容性是通过多域边界变分原理中的拉格朗日乘法器交替执行的,或通过在有限数量的预选点处并置。这些VC分别命名为TVC-BVP和TVC-C。使用这些TVC可以解决几个三维计算微力学问题。计算结果表明,TVC-BVP和TVC-C均可有效预测复合材料/多孔材料的整体性能。它们还可以精确地捕获椭圆形空隙/夹杂物周围的应力集中,结合微裂纹萌生和传播的建模工具,可以将其将来用于研究材料的损伤。因此,我们认为在这项研究中开发的3D TVC非常适合于突破性的异质材料微机械研究。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号