...
首页> 外文期刊>Computers & geosciences >Development of the T+M coupled flow-geomechanical simulator to describe fracture propagation and coupled flow-thermal-geomechanical processes in tight/shale gas systems
【24h】

Development of the T+M coupled flow-geomechanical simulator to describe fracture propagation and coupled flow-thermal-geomechanical processes in tight/shale gas systems

机译:T + M耦合流-地质力学模拟器的开发,用于描述致密/页岩气系统中的裂缝扩展和耦合流-热-地质力学过程

获取原文
获取原文并翻译 | 示例
           

摘要

We developed a hydraulic fracturing simulator by coupling a flow simulator to a geomechanics code, namely T+M simulator. Modeling of the vertical fracture development involves continuous updating of the boundary conditions and of the data connectivity, based on the finite element method for geomechanics. The T+M simulator can model the initial fracture development during the hydraulic fracturing operations, after which the domain description changes from single continuum to double or multiple continua in order to rigorously model both flow and geomechanics for fracture-rock matrix systems. The T+H simulator provides two-way coupling between fluid-heat flow and geomechanics, accounting for thermo-poro-mechanics, treats nonlinear permeability and geomechanical moduli explicitly, and dynamically tracks changes in the fracture(s) and in the pore volume. We also fully account for leak-off in all directions during hydraulic fracturing. We first test the T+M simulator, matching numerical solutions with the analytical solutions for poromechanical effects, static fractures, and fracture propagations. Then, from numerical simulation of various cases of the planar fracture propagation, shear failure can limit the vertical fracture propagation of tensile failure, because of leak-off into the reservoirs. Slow injection causes more leak-off, compared with fast injection, when the same amount of fluid is injected. Changes in initial total stress and contributions of shear effective stress to tensile failure can also affect formation of the fractured areas, and the geomechanical responses are still well-posed.
机译:通过将流动模拟器与地质力学代码(即T + M模拟器)耦合,我们开发了水力压裂模拟器。基于岩土力学的有限元方法,垂直裂缝发展的建模涉及边界条件和数据连通性的连续更新。 T + M仿真器可以对水力压裂作业期间的初始裂缝发展进行建模,然后将域描述从单个连续体更改为双连续体或多个连续体,以便对裂缝岩体系统的流动和地质力学进行严格建模。 T + H仿真器在流体-热流与地质力学之间提供双向耦合,解决了热-孔隙力学问题,明确处理了非线性渗透率和地质力学模量,并动态跟踪了裂缝和孔隙体积的变化。我们还充分考虑了水力压裂过程中各个方向的泄漏。我们首先对T + M模拟器进行测试,将数值解与解析解相结合,以分析物力学效应,静态裂缝和裂缝扩展。然后,从平面裂缝扩展的各种情况的数值模拟来看,由于渗漏到储层中,剪切破坏可以限制拉伸破坏的垂直裂缝扩展。与快速注入相比,当注入相同数量的流体时,慢速注入导致更多的泄漏。初始总应力的变化以及剪切有效应力对拉伸破坏的贡献也可能影响裂缝区域的形成,并且地质力学响应仍然是正确的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号