...
首页> 外文期刊>Composites >An improved plastically dilatant unified viscoplastic constitutive formulation for multiscale analysis of polymer matrix composites under high strain rate loading
【24h】

An improved plastically dilatant unified viscoplastic constitutive formulation for multiscale analysis of polymer matrix composites under high strain rate loading

机译:一种改进的塑性膨胀统一粘塑性本构关系的配方,可在高应变率载荷下对聚合物基复合材料进行多尺度分析

获取原文
获取原文并翻译 | 示例
           

摘要

Polymer matrix composites are commonly used to fabricate energy-absorbing structures expected to experience impact loading. As such, a detailed understanding of the dynamic response of the constituent materials is necessary. Since the rate, temperature, and pressure dependence of carbon fiber reinforced polymer matrix composites are primarily manifestations of the rate, temperature, and pressure dependence of the polymer matrix, it is crucial that the constitutive behavior of the matrix be accurately characterized. In this work, an existing unified viscoplastic constitutive formulation is extended to ensure thermodynamic consistency and to more accurately account for the tension-compression asymmetry observed in the response of polymeric materials. A new plastic potential function is proposed, and elementary loading conditions are utilized to determine relations between model constants to ensure nonnegative plastic dissipation, a necessary thermodynamic requirement. Expressions for plastic Poisson's ratios are derived and are bounded by enforcing nonnegative plastic dissipation. The model is calibrated against available experimental data from tests conducted over a range of strain rates, temperatures, and loading cases on a representative thermoset epoxy; good correlation between simulations and experimental data is obtained. Temperature rises due to the conversion of plastic work to heat are computed via the adiabatic heat energy equation. The viscoplastic polymer model is then used as a constitutive model in the generalized method of cells micromechanics framework to investigate the effects of matrix adiabatic heating on the high strain rate response of a unidirectional composite. The thermodynamic consistency of the model ensures plastic dissipation can only cause an increase in temperature. Simulation results indicate significant thermal softening due to the conversion of plastic work to heat in the composite for matrix dominated deformation modes.
机译:聚合物基复合材料通常用于制造预计会承受冲击载荷的能量吸收结构。因此,必须对构成材料的动态响应有详细的了解。由于碳纤维增强聚合物基复合材料的速率,温度和压力依赖性主要表现为聚合物基体的速率,温度和压力依赖性,因此准确表征基体的本构行为至关重要。在这项工作中,扩展了现有的统一粘塑性组成配方,以确保热力学一致性并更准确地说明聚合物材料响应中观察到的拉伸压缩不对称性。提出了一种新的塑性势函数,并利用基本载荷条件确定模型常数之间的关系,以确保非负塑性耗散,这是必要的热力学要求。推导了塑性泊松比的表达式,并通过强制执行非负塑性耗散来对其进行限制。根据在代表性的热固性环氧树脂上的一系列应变率,温度和载荷情况下进行的测试得出的可用实验数据,对模型进行了校准;模拟与实验数据之间具有良好的相关性。通过绝热热能方程计算由于塑性功转化为热而引起的温度升高。然后,在细胞微力学框架的通用方法中,将粘塑性聚合物模型用作本构模型,以研究基质绝热加热对单向复合材料高应变速率响应的影响。该模型的热力学一致性确保塑料耗散只会导致温度升高。仿真结果表明,由于基体控制的变形模式中塑性功转换为复合材料中的热量,因此产生了显着的热软化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号