...
首页> 外文期刊>Combustion and Flame >Flame thickness and conditional scalar dissipation rate in a premixed temporal turbulent reacting jet
【24h】

Flame thickness and conditional scalar dissipation rate in a premixed temporal turbulent reacting jet

机译:预混时间湍流反应射流中的火焰厚度和条件标量耗散率

获取原文
获取原文并翻译 | 示例
           

摘要

The flame structure corresponding to lean hydrogen-air premixed flames in intense sheared turbulence in the thin reaction zone regime is quantified from flame thickness and conditional scalar dissipation rate statistics, obtained from recent direct numerical simulation data of premixed temporally-evolving turbulent slot jet flames [1]. It is found that, on average, these sheared turbulent flames are thinner than their corresponding planar laminar flames. Extensive analysis is performed to identify the reason for this counter-intuitive thinning effect. The factors controlling the flame thickness are analyzed through two different routes i.e., the kinematic route, and the transport and chemical kinetics route. The kinematic route is examined by comparing the statistics of the normal strain rate due to fluid motion with the statistics of the normal strain rate due to varying flame displacement speed or self-propagation. It is found that while the fluid normal straining is positive and tends to separate iso-scalar surfaces, the dominating normal strain rate due to self-propagation is negative and tends to bring the iso-scalar surfaces closer resulting in overall thinning of the flame. The transport and chemical kinetics route is examined by studying the non-unity Lewis number effect on the premixed flames. The effects from the kinematic route are found to couple with the transport and chemical kinetics route. In addition, the intermittency of the conditional scalar dissipation rate is also examined. It is found to exhibit a unique non-monotonicity of the exponent of the stretched exponential function, conventionally used to describe probability density function tails of such variables. The non-monotonicity is attributed to the detailed chemical structure of hydrogen-air flames in which heat release occurs close to the unburnt reactants at near free-stream temperatures. (C) 2017 Published by Elsevier Inc. on behalf of The Combustion Institute.
机译:根据稀薄的反应区状态下强烈剪切湍流中稀薄的氢-空气预混火焰的火焰结构,根据火焰厚度和条件标量耗散率统计数据进行量化,这些统计数据是从最近预混的随时间演变的湍流狭缝射流火焰的直接数值模拟数据获得的[ 1]。已经发现,平均而言,这些剪切湍流火焰比它们相应的平面层流火焰更薄。进行了广泛的分析,以找出造成这种反直觉变薄效应的原因。通过两种不同的途径,即运动学途径以及运输和化学动力学途径,分析了控制火焰厚度的因素。通过比较流体运动引起的正常应变率的统计数据与火焰变化速度或自蔓延变化引起的正常应变率的统计数据进行比较,来研究运动学路径。已经发现,虽然流体法向应变是正的并且倾向于分离等量表面,但是由于自传播引起的主要法向应变率是负的并且倾向于使等量表面靠近,从而导致火焰整体变薄。通过研究非统一路易斯数对预混火焰的影响,研究了运输和化学动力学途径。运动学途径的影响与运输和化学动力学途径有关。此外,还检查了条件标量耗散率的间歇性。发现它表现出伸展的指数函数的指数的独特非单调性,通常用于描述此类变量的概率密度函数尾部。非单调性归因于氢-空气火焰的详细化学结构,其中在接近自由流的温度下,热释放在未燃烧的反应物附近发生。 (C)2017由Elsevier Inc.代表燃烧研究所出版。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号