...
首页> 外文期刊>Combustion and Flame >Sensitivity of predictions to chemical kinetics models in a temporally evolving turbulent non-premixed flame
【24h】

Sensitivity of predictions to chemical kinetics models in a temporally evolving turbulent non-premixed flame

机译:随时间变化的湍流非预混火焰对化学动力学模型的预测敏感性

获取原文
获取原文并翻译 | 示例
           

摘要

To investigate the sensitivity of predictions to chemical kinetics models, two different kinetics models, GRI-Mech 3.0 and an 11-species syngas model, are compared by performing 3D finite-rate kinetics-based direct numerical simulations (DNS) of a temporally evolving turbulent non-premixed syngas flame. Dynamic adaptive chemistry and correlated transport techniques are applied to enable computationally efficient simulation with the detailed GRI-Mech 3.0. Both chemical kinetics models, providing comparable qualitative trends, capture local extinction and re-ignition events. However, significant quantitative discrepancies (86-100 K difference in the temperature field) indicate high sensitivity to the chemical kinetics model. The 11-species model predicts a lower radicals-to-products conversion rate, causing statistically more local extinction and less re-ignition. This sensitivity to the chemical kinetics model is magnified relative to a 1D steady laminar simulation by the effects of unsteadiness and turbulence (up to 7 times for temperature, up to 12 times for CO, up to 13 times for H-2, up to 7 times for O-2, up to 5 times for CO2, and up to 13 times for H2O), with the deviations in species concentrations, temperature, and reaction rates forming a nonlinear positive feedback loop under reacting flow conditions. The differences between the results from the two models are primarily due to: (a) the larger number of species and related kinetic pathways in GRI-Mech 3.0; and (b) the differences in reaction rate coefficients for the same reactions in the two models. Both (a) and (b) are sensitive to unsteadiness and other turbulence effects, but (b) is dominant and is more sensitive to unsteadiness and other turbulence effects. At local extinction, the major differences between the results from the two chemical kinetics models are in the peak values and the volume occupied by the peak values, which is dominated by unsteady effects; at re-ignition, the differences are mainly observed in the spatial distribution of the reacting flow field, which is primarily dominated by the complex turbulence-chemistry interaction. (C) 2017 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
机译:为了研究预测对化学动力学模型的敏感性,通过执行基于3D有限速率动力学的时间演化湍流直接数值模拟(DNS),比较了两种不同的动力学模型GRI-Mech 3.0和11种合成气模型非预混合合成气火焰。应用动态自适应化学和相关的运输技术,可以使用详细的GRI-Mech 3.0进行高效计算。两种化学动力学模型都提供了可比的定性趋势,捕获了局部灭绝和重燃事件。但是,显着的定量差异(温度场相差86-100 K)表明对化学动力学模型具有高度敏感性。 11种模型预测自由基转化为产物的转化率较低,从而在统计上引起更多的局部灭绝和更少的重新点燃。通过不稳定和湍流的影响,相对于一维稳定层流模拟,对化学动力学模型的敏感性得到了放大(温度高达7倍,CO高达12倍,H-2高达13倍,H高达7倍O-2的最大吸收时间,CO2的最大5倍,H2O的最大13倍),物种浓度,温度和反应速率的偏差形成了在反应流动条件下的非线性正反馈回路。这两个模型的结果之间的差异主要是由于:(a)GRI-Mech 3.0中的物种数量和相关的动力学途径更大; (b)两个模型中相同反应的反应速率系数的差异。 (a)和(b)都对不稳定和其他湍流效应敏感,但是(b)占主导地位,并且对不稳定和其他湍流效应更敏感。在局部消光时,两个化学动力学模型的结果之间的主要区别在于峰值和峰值所占据的体积,其中不稳定的影响决定了这一点。在重新点火时,主要在反应流场的空间分布中观察到差异,这主要由复杂的湍流-化学相互作用决定。 (C)2017燃烧研究所。由Elsevier Inc.出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号