...
首页> 外文期刊>Cold regions science and technology >Investigating the release and flow of snow avalanches at the slope-scale using a unified model based on the material point method
【24h】

Investigating the release and flow of snow avalanches at the slope-scale using a unified model based on the material point method

机译:基于物点法的统一模型调查雪崩在雪崩尺度上的释放和流动

获取原文
获取原文并翻译 | 示例
           

摘要

Snow slab avalanches start with a failure in a weak snow layer buried below a cohesive snow slab. After failure, the very porous character of the weak layer leads to its volumetric collapse and thus closing of crack faces due to the weight of the overlaying slab. This complex process, generally referred to as anticrack, explains why avalanches that release on steep slopes can be triggered from flat terrain. On the basis of a new elastoplastic model for porous cohesive materials and the Material Point Method, we investigate the dynamics of mixed-mode anticracks, the subsequent detachment of the slab and the flow of the avalanche. In particular, we performed two and three dimensional slope scale simulations of both the release and flow of slab avalanches triggered either directly or remotely. We describe the fracture and flow dynamics on a realistic topography and focus on the volumetric plastic strain, stress invariants, propagation speed and flow velocity. Our simulations reproduce typical observations of "en-echelon" fractures and the propagation speed reached up to three times that measured in field experiments. In addition, slab fracture always started from the top in the Propagation Saw Test while it systematically initiated at the interface with the weak layer at the crown of slope-scale simulations in agreement with limited field observations. During the avalanche flow, snow granulation, erosion and deposition processes were naturally simulated and do not need additional implementations. Our unified model represents a significant step forward as it allows simulating the entire avalanche process, from failure initiation to crack propagation and to solid-fluid phase transitions, which is of paramount importance to forecast and mitigate snow avalanches.
机译:积雪板的雪崩始于埋在粘性积雪板下方的薄弱雪层的破坏。破坏后,薄弱层的非常多孔的特性导致其体积塌陷,从而由于覆盖板的重量而使裂纹面闭合。这个复杂的过程通常称为“防裂”,这解释了为什么平坦地形会触发在陡坡上释放的雪崩。基于多孔黏性材料的新型弹塑性模型和“材料点法”,我们研究了混合模式抗裂的动力学,平板的后续分离和雪崩流。特别是,我们对直接或远程触发的平板雪崩的释放和流动进行了二维和三维斜率模拟。我们在真实的地形上描述裂缝和流动动力学,并着重于体积塑性应变,应力不变性,传播速度和流速。我们的模拟再现了“梯形”裂缝的典型观察结果,其传播速度达到了现场实验中测量速度的三倍。此外,平板裂缝总是在传播锯试验中从顶部开始,而它是在坡度模拟的顶部与薄弱层的界面处系统地引发的,这与有限的现场观测结果是一致的。在雪崩流期间,自然模拟了雪粒化,侵蚀和沉积过程,不需要其他实现。我们的统一模型代表了向前迈出的重要一步,因为它可以模拟整个雪崩过程,从破坏开始到裂纹扩展再到固相流变,这对于预测和减轻雪崩至关重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号