...
首页> 外文期刊>Biomedical signal processing and control >Application of trilateration and Kalman filtering algorithms to track dynamic brain deformation using sonomicrometry
【24h】

Application of trilateration and Kalman filtering algorithms to track dynamic brain deformation using sonomicrometry

机译:三边测量和卡尔曼滤波算法在使用体测法追踪动态脑部变形中的应用

获取原文
获取原文并翻译 | 示例
           

摘要

Trilateration and Kalman filtering algorithms have been used in many tracking applications ranging from Global Positioning Systems to biomechanics experiments to track rigid body motion and position. Recently, a technique called sonomicrometry was used to measure the deformation of human brain tissue during an injurious impact by measuring distances between sensor pairs embedded in the parenchyma and skull. The array of measured distances were used to calculate the position of each sensor at high sampling rates to quantify brain dynamic deformation. However, non-linear trilateration and Kalman filtering algorithms, which are traditionally used to track object positions, have not been investigated for the unique application of high-rate, small displacement, and dynamic deformation data collected using sonomicrometry. The objective of this study was to compare eight trilateration and Kalman filtering algorithms to determine the most suitable method for sonomicrometry trilateration. The algorithms were tested using experimental brain deformation sonomicrometry data in which random measurement errors were intentionally introduced to evaluate the effect and robustness on tracking dynamic position. The results showed that linear least squares trilateration methods performed poorly compared to the non-linear methods. Maximum Likelihood Estimate and Kalman filtering were the best performing algorithms. The Kalman filtering method was the most suitable for tracking dynamic brain deformation using sonomicrometry because it provided an accurate estimation of dynamic position and the estimated position was insensitive to the chosen initial parameters. The algorithms and error analysis can be extended to a variety of positioning applications using sonomicrometry or similar high-rate dynamic deformation tracking. (C) 2019 Elsevier Ltd. All rights reserved.
机译:从全球定位系统到生物力学实验,三边测量和卡尔曼滤波算法已用于许多跟踪应用中,以跟踪刚体的运动和位置。最近,一种被称为人体计量学的技术被用于通过测量嵌入在实质组织和颅骨中的传感器对之间的距离来测量伤害性撞击期间人脑组织的变形。测量距离的数组用于计算高采样率下每个传感器的位置,以量化大脑动态变形。但是,传统上用于跟踪对象位置的非线性三边测量和卡尔曼滤波算法尚未针对通过体测法收集的高速率,小位移和动态变形数据的独特应用进行研究。这项研究的目的是比较八种三边测量法和卡尔曼滤波算法,以确定最适合的体测三边测量方法。使用实验性大脑变形体测术数据对算法进行了测试,其中故意引入了随机测量误差以评估跟踪动态位置的效果和鲁棒性。结果表明,与非线性方法相比,线性最小二乘三边测量法的效果较差。最大似然估计和卡尔曼滤波是性能最好的算法。卡尔曼滤波方法最适合使用体测法追踪动态大脑变形,因为它提供了动态位置的准确估计,并且估计位置对所选的初始参数不敏感。该算法和误差分析可以使用体测法或类似的高速率动态变形跟踪扩展到各种定位应用。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号