...
首页> 外文期刊>Applied Surface Science >Ultrafine nano-network structured bacterial cellulose as reductant and bridging ligands to fabricate ultrathin K-birnessite type MnO2 nanosheets for supercapacitors
【24h】

Ultrafine nano-network structured bacterial cellulose as reductant and bridging ligands to fabricate ultrathin K-birnessite type MnO2 nanosheets for supercapacitors

机译:超细纳米网络结构化细菌纤维素作为还原剂和桥联配体,可制备用于超级电容器的超薄钾水钠锰矿型MnO2纳米片

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

In this work, nanostructured ultrathin K-birnessite type MnO2 nanosheets are successfully prepared by a rapid and environmently friendly hydrothermal method, which involves only a facile redox reaction between KMnO4 and nano-network structured bacterial cellulose with abundant hydroxyl groups. The results show that the unique three-dimensional interwoven structured bacterial cellulose acts as not only reductant but also bridging ligands for assembling nanoscaled building units to control the desired morphology of prepared MnO2. Furthermore, electrochemical performances of prepared MnO2 are investigated as electrode materials for supercapacitors by cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectrum in 1.0 M Na2SO4 electrolyte. The resulting ultrathin K-birnessite type MnO2 nanosheets based electrode exhibits higher capacitance (328.2 F g(-1) at 0.2 A g(-1)), excellent rate capability (328.2 F g(-1) and 200.4 F g(-1) at 0.2 A g(-1) and 2.0 A g(-1), respectively) and satisfactory cyclic stability (91.6% of initial capacitance even after 2000 cycles at 3.0 A g(-1)). This work suggests that bacterial cellulose as reductant is a promising candidate in the development of nanostructures of metal oxides. (C) 2017 Elsevier B.V. All rights reserved.
机译:在这项工作中,通过快速和环境友好的水热方法成功地制备了纳米结构的超薄K水钠锰矿型MnO2纳米片,该方法仅涉及KMnO4与具有丰富羟基的纳米网络结构细菌纤维素之间的简便氧化还原反应。结果表明,独特的三维交织结构化细菌纤维素不仅充当还原剂,而且还作为桥联配体,用于组装纳米级建筑单元,以控制所需制备的MnO2的形态。此外,通过循环伏安法,恒电流充/放电和1.0 M Na2SO4电解质的电化学阻抗谱,研究了制备的MnO2作为超级电容器的电极材料的电化学性能。所得的超薄K水钠锰矿型MnO2纳米片基电极表现出更高的电容(在0.2 A g(-1)时为328.2 F g(-1)),出色的倍率能力(328.2 F g(-1)和200.4 F g(-1) )分别在0.2 A g(-1)和2.0 A g(-1)时)和令人满意的循环稳定性(即使在3.0 A g(-1)下经过2000次循环后,初始电容的91.6%)这项工作表明细菌纤维素作为还原剂是金属氧化物纳米结构发展中的有希望的候选者。 (C)2017 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Applied Surface Science》 |2018年第1期|419-427|共9页
  • 作者单位

    Southwest Univ Sci & Technol, Sch Mat Sci & Engn, Mianyang 621010, Peoples R China;

    Sichuan Changhong New Energy Technol Co Ltd, Mianyang 621000, Peoples R China;

    Southwest Univ Sci & Technol, Sch Mat Sci & Engn, Mianyang 621010, Peoples R China|Mianyang Kingtiger New Energy Technol Co Ltd, Mianyang 621000, Peoples R China;

    Southwest Univ Sci & Technol, Sch Mat Sci & Engn, Mianyang 621010, Peoples R China;

    Southwest Univ Sci & Technol, Sch Mat Sci & Engn, Mianyang 621010, Peoples R China;

    Southwest Univ Sci & Technol, Ctr Anal & Test, Mianyang 621010, Peoples R China;

    Southwest Univ Sci & Technol, Ctr Anal & Test, Mianyang 621010, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Ultrathin K-birnessite type MnO2; Bacterial cellulose; Nanolayered structures; Specific capacitance; Supercapacitors;

    机译:超薄钾水钠锰矿型MnO2;细菌纤维素;纳米结构;比电容;超级电容器;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号